Part VI:
Advanced Topics

(Bonus Material
on CD-ROM)

This part includes additional material that are related to Part IV and Part V; it consists of two
sub-parts.

In the first sub-part, three chapters (Chapter 21, Chapter 22, and Chapter 23) cover func-
tions and components of a router in further detail as a continuation of Part IV. First, different
approaches to architect the switch fabric of a router are presented in Chapter 21. Second,
packet queueing and scheduling approaches are discussed along with their strengths and
limitations in Chapter 22. Third, traffic conditioning, an important function of a router, espe-
cially to meet service level agreements, is presented in Chapter 23.

In the second sub-part, we include two chapters (Chapter 24 and Chapter 25). Transport
network routing is presented first in its general framework, followed by a formal treatment of
the transport network route engineering problem over multiple time periods, in Chapter 24.
The final chapter (Chapter 25) covers two different dimensions: optical network routing and
multi-layer network routing. In optical network routing, we discuss both SONET and WDM
in a transport network framework; more importantly, we also point out the circumstances un-
der which a WDM on-demand network differs from a basic transport network paradigm. Fur-
thermore, we discuss routing in multiple layers from the service network to multiple views
of the transport networks; this is done by appropriately considering the unit of information
on which routing decision is made and the time granularity of making such a decision. We
conclude by presenting overlay network routing and its relation to multilayer routing.

22

Packet Queueing
and Scheduling

We dance round in a ring and suppose,
But the Secret sits in the middle and knows.

Robert Frost

Reading Guideline

In this chapter, we present handling of packets by the queue manager at a router for
queueing and scheduling. While this chapter can be read independently, the back-
ground on router architectures presented in Chapter 14 is useful in understanding
why packet queueing and scheduling is important.

D. Medhi and K. Ramasamy, Network Routing: Algorithms, Protocols, and Architectures.
© 2007 by Elsevier, Inc. All rights reserved.

22.1

22.1.1

CHAPTER 22 Packet Queueing and Scheduling 3

A critical function of a router is to handle queueing of arriving packets and then schedule
them on an outgoing interface. This is essentially the job of the “queue manager” at a router,
as shown earlier in several figures in Chapter 14. An important requirement is that these func-
tions must be efficient so that a packet leaves a router extremely quickly while giving priority
to certain packet types as and when needed. However, in case of heavy traffic, a router might
receive many packets almost instantaneously from active microflows, which are then queued
in a buffer. Since a buffer is of finite size, it is quite possible that it becomes full—in this case,
some packets are to be dropped. The question then is: what rules or policies are to be used
for selecting packets to be dropped? The decision on dropping packet is, in fact, dictated to
some extent by whether this is desirable from the point of view of an end-to-end delivery
to end hosts. Since most microflows going through a router are TCP-based, it is important
to understand the basics of TCP congestion control mechanisms to fully comprehend why a
particular packet-dropping policy might be better or worse.

In this chapter, we discuss queueing and scheduling issues and algorithms for process-
ing packets, including any priority considerations. In addition, we present an overview of
TCP congestion control mechanisms, and a variety of packet-dropping or discarding policies.
From a queue manager point of view, when a packet arrives, it is ready to schedule it using
one of possible schemes, unless it is to be dropped, for example, due to congestion—and to
do this all in an efficient manner.

Packet Scheduling

There are many possible queueing disciplines for packet scheduling. There are, however,
two important issues to consider about a queueing discipline: (1) its performance in terms
of bounded delay, and (2) whether it can be implemented efficiently. An additional issue
is when there are different traffic classes that require different delay guarantees and, possi-
bly, bandwidth guarantees. In this section, we present several mechanisms and discuss their
strengths and weaknesses.

First-In, First-Out Queueing

The idea of first-in, first-out (FIFO) queueing is simple. The first packet that arrives at the
router is the first one to be transmitted. Note that FIFO queueing is also referred to as
first-come, first-served (FCFS) queueing. FIFO, being the simplest, is easy to implement and
presents a low system overhead for software-based routers. The advantage of a FIFO queue
is that it provides a predictable delay that packets can experience as they pass through the
router. If ¢ is the link speed and B is the maximum buffer size, then the delay bound, D, can
be calculated as follows:

p<8 (22.1.1)
c
The major limitation of FIFO queueing is its inability to discriminate packets based on
service class. For instance, a single flow that has bursty arrival can monopolize the entire
buffer space of the queue causing all other flows to be denied service until after the burst is
serviced. Thus, this form of queueing is used as the default for an output link in a router in
the absence of any other queueing discipline.

4 22.1 Packet Scheduling

22.1.2 Priority Queueing

The basic idea behind priority queueing is to classify the packets for various traffic streams
arriving at the input link into one or more priority classes as shown in Figure 22.1. This func-
tionality is needed, for example, for the differentiated services architecture. Traffic streams
are also referred as flows, which identify a stream of packets that have certain common pa-
rameters and have well-defined priority. For example, common parameters could be the des-
tination IP address block, source IP address, or port number, and a priority could be VoIP
packets. Such priority information is then communicated along the path of flow, for exam-
ple, by marking differentiated services code bits (DSCP) (see Figure 1.3(a) and Figure 22.11);
this is typically done closer to the origination of a flow, such as the ingress router. Thus, at
an intermediate router, the DSCP bits would serve as the indicator on whether a packet is to
be prioritized and the router then associates a queue with each priority class and places the
classified packets in the appropriate queues. When choosing a packet to transmit, the router
will select the highest priority queue that has a nonempty queue before moving on to the next
priority queue. Within each priority class, packets are still scheduled in FIFO order.

The main advantage of priority queueing is the segregation of traffic into different classes,
and then one class of traffic is served differently from other classes of traffic. Such segregation
allows for the preferential treatment of real-time traffic such as VoIP and interactive video
(that are assigned higher priority) over non-real-time traffic such as ftp traffic. A difficulty
with the priority queueing discipline is that it does not make any guarantees for a particular
priority class. It just allows high-priority packets to cut to the front of the line. Furthermore,
since it always processes a higher-priority queue before a lower-priority one, it is possible for
a high-priority queue to cause packets in a lower-priority queue to be delayed or dropped
if the high-priority queue is receiving a constant stream of packets. This essentially leads to
bandwidth starvation for lower-priority traffic. To make it feasible, some form of hard limit
needs to be imposed on how much higher-priority traffic is inserted in the queue. Thus, to
provide flexibility of choice, priority queueing that operates in one of the two modes, strict
priority queueing and rate-controlled priority queueing, are popular. We discuss them below.

STRICT PRIORITY QUEUEING

This is the mode in which the traffic in higher-priority queues is always scheduled ahead
of the traffic in the lower-priority queues—which is discussed above. We know from the
above discussion that this could lead to bandwidth starvation for lower-priority traffic when

High-Priority Queue

— L JCIOON,

Medium-Priority Queue

R ey S
. BBSTaoeoY

FIGURE 22.1 Priority queueing.

Packet Departures

22.1.3

CHAPTER 22 Packet Queueing and Scheduling 5

there is an excessive amount of high-priority traffic. However, there are situations in which
it is desirable to support strict priority queueing. Consider the scenario in which a service
provider, in order to carry VoIP traffic, might have to comply with certain regulations. For
example, such a regulation might be that no VoIP traffic should be dropped no matter how
congested the network might be. Such a regulation can be supported by using strict priority
queueing in which VoIP traffic is placed in a high-priority queue without any limitation on
the bandwidth consumed.

Another scenario in which strict priority queueing is used is to protect and prioritize
packets that carry routing update information for routing protocols during periods of conges-
tion. Such prioritization is needed to stabilize the route tables when, for example, a topology
change occurs.

RATE-CONTROLLED PRIORITY QUEUEING

Unlike strict priority queueing, rate-controlled priority queueing limits the amount of high-
priority traffic so that lower-priority traffic can be scheduled. In other words, rate-controlled
priority queueing schedules packets from higher-priority queues before packets from lower-
priority queues as long as the amount of traffic in the higher-priority queue stays below a
certain threshold.

Suppose that a higher-priority queue is rate limited to 25% of the outgoing link band-
width. As long as the packets from higher-priority traffic consume less than 25% of the output
link bandwidth, packets from this queue are scheduled ahead of the lower-priority queues.
The moment the higher-priority traffic exceeds 25%, packets in the lower-priority queue can
be scheduled ahead of the packets from the higher-priority queue.

Round-Robin and Fair Queueing

Round-robin is similar to priority queueing. It, however, handles multiple traffic classes dif-
ferently in that it alternates service among different traffic classes (flows). Fair queueing is
essentially a round-robin scheme, but can be best described as an approximate bit-by-bit
round-robin scheme. Consider Figure 22.1 where we described priority queueing, with three
different queues; fair queueing means that the scheduler takes turns in processing a packet
from each queue (see also Figure 22.2).

In practice, it is not possible to implement a bit-by-bit scheme for packets arriving for
different flows; instead, if there are N active flows, we have to count the clock N bits at a
time (“N-bit clock”). Similar to priority queueing, each flow i is assigned a separate queue.
If ¢ is the link speed, then each flow i gets a minimum fair share of ¢/N bits per second on
the output. Note that if the link is fully loaded, each queue cannot get more than ¢/N bits per
second. However, if not all flows have packets to send at a particular instant, an individual
queue might get higher than ¢/N for itself.

Suppose that the arriving time of packet k for a flow is A, start time for transmission is
Sk, and the end time is Ej, respectively. Then, the time needed to send packet k is E; — Sk, to
be denoted by packet sending time Py, i.e., Px = Ex — Sx. We can write this as: Ex = Sk + P.
We, however, need to determine the start time, Sx—this would be arriving time Ay if there is
no outstanding packet that is done sending; otherwise, the start time will need to wait until

22.1.4

6 22.1 Packet Scheduling

A-1 A-2 A-3
Flow A

B-1 B-2 | B-3
Flow B

C1jC2jC3

Flow C

D-1 D-2 D-3
Flow D

Priority Queueing

Fair Queueing

A-1{B-1|D-1jB2jB3jC1jC2jC3jD2jD-3jA2jA3

Weighted Fair Queueing
1 2 3 4 5 6 7 8 9 10 11 12

FIGURE 22.2 Visual comparison of FIFO, FQ, and WFQ scheduler for four traffic classes,
from high priority (Flow A) to low priority (Flow D); for illustration, fixed-size packets are
shown (adapted from [494]).

the end time of previous packet (k — 1) is over. That means the start time for packet k is the
maximum of Ay and E;_1. Thus, we can write

Ey =max{Ag, Ex—1}+ Pk, (22.1.2)

where Ay, the arrival time of packet k, will be computed using the N-bit clock discussed
earlier.

While the fair queueing discipline can guarantee a minimum fair share and bound on
the delay for each flow, it faces a different problem from an implementation point of view.
As we can see above, for a packet for each flow an end time is calculated—this packet is
then added to a queue of packets that are sorted based on the end time. Thus, we face with
the problem of inserting a packet into a sorted queue; for N flows, this operation, however,
requires O(log N) time with currently known best algorithms for insertion into a queue. That
is, packet processing can be quite expensive if there are too many flows to handle, which is
likely, especially in a high-speed core network router.

Weighted Round-Robin and Weighted Fair Queueing

Weighted round-robin (WRR) is also a scheme for handling multiple traffic classes like the
round-robin scheme; rather, it is a variation of round-robin in which each traffic class can
be assigned a weight. Weighted fair queueing (WFQ) is similarly a variation of fair queueing
and can be described as an approximate bit-by-bit weighted round-robin scheme. It is not quite

CHAPTER 22 Packet Queueing and Scheduling 7

apparent where WRR and WFQ are different; to understand their differences, we consider the
following example.

Example 22.1 WRR is fair for packets of fixed length and unfair for packets of variable length.

Consider three queues Q1, Q2, and Q3 that are serviced by WRR. Assume that the output
link bandwidth shared by these queues is as follows. Q1 is allowed to consume 40% of the
bandwidth while the remaining 60% of the bandwidth is split equally between Q2 and Q3.
If all the packets in all queues are 100 bytes, then at the end of a single service round four
packets from Q1 (400 bytes), three packets from queue Q2 (300 bytes), and another three
packets from queue Q3 (300 bytes) would have been transmitted. A total of 1000 bytes are
transmitted, out of which 400 bytes belong to Q1, thereby receiving its allotted bandwidth of
40%. Similarly, queues Q2 and Q3 transmitted 300 bytes each, thereby receiving their allotted
share of 30% each.

Now let us consider the case of packets of variable length, assuming that the WRR sched-
uler is configured exactly the same as in the previous case for sharing the output port band-
width. However, the packet sizes are different for each of the queues. Let us assume the mean
packet sizes for Q1, Q2, and Q3 are 100 bytes, 150 bytes, and 250 bytes, respectively. After a
single round of service, Q1 would have transmitted four packets (400 bytes), Q2 would have
transmitted three packets (450 bytes), and Q3 would also have transmitted three packets (750
bytes) for an aggregate total of 1600 bytes. This implies that Q1 received 25% of the band-
width, which is less than the 40% it is expected to receive. Similarly, Q2 received 28.1%, which
is less than the allotted 30%. However, Q3 received 46.9% of the bandwidth, which is greater
than its share of 30%. As you can see, the queue that receives a larger mean packet size than
other queues consumes more than the configured share of the output port bandwidth. A

Note that if packets from different queues have different sizes, the WRR scheduler di-
vides each queue’s percentage by its mean packet size to obtain a normalized set of weights.
This normalized set of weights indicates how many packets need to be transmitted from each
queue in a single round of service. Using the example of packets of variable length, the nor-
malized weights for Q1, Q2, and Q3 are 2/5, 1/5, and 3/25. Converting these weights into
whole integers gives 10, 5, and 3 packets.

In general, the rate guarantees in a WFQ scheduler can be described as follows. Consider
N flows where each flow i is assigned a weight w;. Given the outgoing link capacity to be c,
each flow i will receive at least the service rate R; given by

Rl:(@i)c. (22.1.3)

N
Zn:l Wn

Since at a particular instant, only a subset of flows would be active, say N , we can replace N
by N in the above result to obtain the effective fair share. If flow i is allocated a buffer size of
B;, then the delay bound, D;, for flow i can be given by

D;< =L, (22.1.4)

i

22.1.5

8 22.1 Packet Scheduling

To summarize, for fixed-size data packets, WRR and WFQ can be thought of as the same
and give the same fairness; however, WRR is not as fair for variable-length packets. We can
see that WFQ provides nice delay bound and bandwidth guarantee for different streams;
however, it suffers from processing complexity since the currently known best algorithms
take O(log N) time for N simultaneous flows [72], [670]. On the other hand, a round-robin
approach is efficient from the processing point of view since its processing complexity is
constant time, i.e., O(1). Can we combine these ideas? This will be discussed in the next
section. Meanwhile, for a visual comparison between FIFO, fair queueing, and WFQ for traffic
streams with different priorities, refer to Figure 22.2; for simplicity of illustration, we have
used fixed-size packets.

Deficit Round-Robin Queueing

From the above discussion, we can see that often the tussle is between bounding delay and
bandwidth guarantee or reducing processing time. Usually, it is favorable to reduce process-
ing time from the viewpoint of a router. However, for many applications, bandwidth guaran-
tee is important—the delay bound is not as critical; furthermore, fairness as in fair queueing
(or WFQ) is also desirable. Deficit round-robin (DRR) queueing tries to address this prob-
lem [640]. The round-robin approach is desirable from the processing point of view since its
processing complexity is constant time, i.e., O(1), as opposed to O(log N) time for fair queue-
ing. Thus, DRR achieves fairness while having low processing complexity.

DRR can be best illustrated through three key parameters: quantum, Q;, represents the
transmission credits in bytes provided to queue i in the round-robin fashion; deficit counter,
Cl.def, tracks the difference between the number of bytes that should have been sent and the
number of bytes actually sent from queue i in each cycle; and buffer size, B;, for queue i.

If a larger quantum size is assigned to a queue, it gets a larger share of the bandwidth of
the outgoing link. In this scheme, for each queue i, the algorithm maintains a constant Q; (its
quantum) and a variable C?ef (its deficit).

On each cycle, the algorithm visits each nonempty queue in sequence. For each non-
empty queue i, the algorithm will transmit as many packets as possible such that their total
size B, is less than or equal to Q; + leiEf. If the queue i gets emptied, the algorithm resets C?ef
to zero. If it is not reset to zero, Cflef will build up credits indefinitely, eventually leading to
unfairness. If the queue is not emptied, then a deficit exists between the number of bytes the
algorithm hoped to send Q; + C%! and the number of bytes actually sent B;. Thus, the deficit
of queue C?ef is updated to Q; + C?ef — B; and the algorithm moves on to service the next
nonempty queue.

As can be seen from the algorithm, Q; + C?ef represents the maximum number of bytes
that can be transmitted during a round-robin cycle. Queues that were not able to send as
many as Q; + C?ef bytes are compensated in the next cycle with Q; + Cl.def — B; more bytes
to send in addition to the regular quantum Q;. The updated C?ef represents the bytes to be
compensated. The following example will provide a better understanding of the algorithm.

Example 22.2 Scheduling packets using deficit round-robin.
Consider the example illustrated in Figure 22.3. The figures show three queues—Fi, F3,
and F3—consisting of packets that need to be transmitted. For the sake of discussion, assume

CHAPTER 22 Packet Queueing and Scheduling 9

Deflicit
Packet Queues Round robin o ynters

pointer
; [200][300 H 250] | 00 | cdef
3 [300 M 300][200]

(a)

e}

ez}
N

Packet Queues

Round robin

vpointer
3 300 300 200

(b)

o
¢ ¥
B 2
5
[ERe
3
(@}
W
o
e

e

N’Ti

400 cgef

i

@)
[St)=%
®
o

Deflicit
counters

def

Packet Queues

k!

e}
N

Round robin
pointer

. e

@)
wa
)
LS

Deflicit
counters

Packet Queues Round robin
pointer

F 200 550 cqlef

&l

9;”

(d)

FIGURE 22.3 Illustration of deficit round-robin (DRR).

that the quantum size is 400 bytes. Initially, all C{*! are set to zero and the round-robin pointer
points to queue Fi.

The algorithm first allocates a quantum size of 400 to C{*' and as a result it contains
400 transmission credits. This allows queue F; to transmit the first packet of size 250 bytes,

10 22.1 Packet Scheduling

leaving only 150 bytes, which is not sufficient to transmit the second packet of size 300. Thus,
the remaining 150 credits are left as a deficit in C{*.

Now the algorithm moves to the next non-empty queue F,. Again, a quantum size of 400
is added to C$°!, which is sufficient to transmit the first packet of size 100 bytes. Thus, the
remaining 300 is left as a deficit for the next cycle. Similarly, for queue F3, the first packet of
size 200 is transmitted, leaving a deficit of 200.

The algorithm now returns to the F| queue, starting the second cycle. It gives another
fresh quantum of 400 credits in addition to the remaining deficit of 150, leaving Cijef at 550.
This is sufficient to send the remaining two packets of sizes 300 and 200. The remaining 50
credits could have been saved as a deficit for the packets that arrive later. Instead, it resets C ‘fef
to zero as there are no more packets waiting in the queue and moves to the next nonempty
queue F;.

Again, queue F, gets a new quantum of 400 and, thus, the balance becomes 700. This
allows the second packet to be transmitted, leaving a deficit of 100. The pointer now moves
to F3, which gets another fresh quantum of 400. Along with a deficit of 200 from the previ-
ous cycle, it sends the remaining two packets, leaving a deficit of 0 and no more packets to
transmit.

Now the round-robin pointer moves directly to the only nonempty queue F,. After get-
ting a quantum of 400, F, is able to send its third packet of size 200. Since there are no more
packets to send, the deficit counter C$°! is zeroed. Hence in three cycles, all the packets have
been transmitted. A

To ensure that the algorithm serves at least one packet per queue during a cycle, the
quantum size needs to be at least Cmax, the MTU size of the outgoing link (alternatively, the
largest possible packet size that can be sent).

Irrespective of quantum size, as the size of the packet transmitted can never be larger
than the Pnax of the outgoing link, C?ef, at any instant, can never be greater than Crnax. If the
algorithm has cycled all the queues, say N, times, then the expected number of bytes sent by
queue i is N x Q;. If the actual bytes sent is B;, then N x Q; — B; will be less than Crnax.

Assigning different quantum values to each queue leads to an allocation of a different
percentage of the outgoing link bandwidth for the corresponding queues. If Q; (quantum
size of queue i) is twice the value of Q; (quantum size of queue j), then queue i will receive
twice the bandwidth of j when both queues are active.

The main issue in implementing DRR is eliminating the examination of empty queues. If
the number of empty queues is much larger than the number of active queues, a substantial
amount of time spent is wasteful. To eliminate this waste, the algorithm maintains a separate
queue called ActiveList. The ActiveList contains a list of the queue indices that contain at least
one packet. Each entry in the ActiveList, in addition to the queue index, keeps track of its
unused deficit as well.

Referring to the example, the ActiveList will contain the indices for all the three queues
(F1, F», and F3) with F;’s being at the head. After servicing queue Fj, it will be placed at the
tail of the ActiveList. If the serviced queue becomes empty (no packets to transmit), then the
queue is removed from the ActiveList. The use of ActiveList provides the advantages of empty
queues not being examined and further prevents an empty queue getting from a quantum
added when it is idle.

22.1.6

22.2

CHAPTER 22 Packet Queueing and Scheduling 11

Modified Deficit Round-Robin Queueing

Modified deficit round-robin (MDRR) is a variation of DRR that also addresses delay mini-
mization for some traffic streams. This is helpful, for example, in handling VoIP packets. Al-
though VoIP streams need both bandwidth and delay guarantee, we can think of an alternate
approach of providing bandwidth guarantee with minimizing delay. The MDRR scheme then
addresses how to minimize delay on top of the DRR scheme. For example, such a modifica-
tion can be done by assigning priority to queues, which then serve as scheduling priority for
different queues. For example, an ultra-high-priority queue may be defined, which always
gets priority if it has packets to send and is not restricted by the quantum size. It is important
to note that modification as in MDRR does not necessarily mean that this is a unique approach;
different modifications can be employed; for example, see [379]. It is worthwhile to note that
most router vendors currently implement some form of MDRR queueing.

TCP Congestion Control

In this section, we present an overview of TCP congestion control. Why do we need to know
about TCP congestion control in regard to packet queueing and scheduling? We first ad-
dress this point before presenting TCP congestion control mechanisms. Currently, most com-
monly used applications in the Internet are TCP-based. To provide good throughput, yet be
conscious about congestion, is the basic philosophy of TCP congestion control mechanisms.
From a router point of view, it is important to see what mechanisms it must have so that it
is TCP-friendly; second, a router should be fair to different TCP microflows in the presence
of congestion as well. It is important to understand the distinction between fairness in TCP
congestion control as opposed to fairness in packet scheduling. Packet scheduling handles
fairness once it has already been decided that a packet is to be processed for queueing; how-
ever, fairness as in TCP congestion control refers to how a buffer handles dropping of packets
(before scheduling) for different TCP microflows so that one or more microflows do not un-
duly suffer. Thus, we start with TCP congestion control in order to understand benefits or
drawbacks of different packet-dropping mechanisms at a router.

When one or several TCP connections send packets at high rates, the network can suf-
fer from congestion. At these high rates, intermediate routers receive more packets than
they can buffer. As a result, some packets or their corresponding ACKs may experience
more delay or may be dropped before reaching their destination. These dropped packets
would trigger timeout at their sources, resulting in retransmission. Such retransmissions in-
crease the number of packets entering the network, thus worsening congestion by introduc-
ing more delay and packet drops. These conditions continue until all the resources in the
network are utilized to carry packets part of the way before they are dropped and essen-
tially the network is not doing any useful work. Such a condition is called congestion col-
lapse.

To avoid congestion collapse from occurring, new mechanisms were introduced into TCP
[334]. These mechanisms are based on the principle of conservation of packets. The idea is
that a new packet is not injected into the network until an old packet leaves. The sender uses
the reception of an ACK as an indication that the packet sent earlier has left the network and
initiates the next packet transmission without adding to the level of congestion. This implies

22.2.1

12 22.2 TCP Congestion Control

that the data packets leave the sender at the same pace as the ACKs arrive at the sender and,
thus, TCP is said to be self-clocking.

In addition, the congestion control mechanism determines the available capacity in the
network so that the sender knows how many packets it can safely have in transit. This prop-
erty can be used to limit the number of transit packets in the network.

For each TCP connection, the congestion control mechanism tracks several parameters
such as congestion window. The congestion window, denoted CongWindow, indicates how
many bytes the source is allowed to have in transit at any given time. The congestion win-
dow is not more than the advertised window (AdvWindow), advertised by the received,
that is used for flow control. Using both the congestion window and advertised window, the
sender calculates the effective window (EffWindow), which represents the amount of unac-
knowledged data that a source can have in transit at a given time. Specifically, the effective
window may not exceed the minimum of the congestion window and advertised window,
ie.,

MaxWindow < min {CongWindow, AdvWindow} x EffWindow

= MaxWindow — (LastByteSent — LastByteAcked). (22.2.1)

This equation implies that the source is not allowed to send at a rate faster than what can be
handled either by the network or the destination. For example, consider that CongWindow
is 10 Kbytes and AdvWindow is 1 Kbytes; if the receiver of a TCP connection is able to accept
traffic at 1 Kbytes (AdvWindow of 1 Kbytes) and the network is capable of delivering traffic
at 10 Kbytes (CongWindow of 10 Kbytes), then the sender uses the minimum of AdvWindow
and CongWindow, which is 1 Kbytes. Alternatively, if the receiver is able to accept traffic at
5 Kbytes and the network is capable of handling 1 Kbytes at that time, then the sender will
send at 1 Kbytes speed, even if the receiver can handle 5 Kbytes, for congestion not to occur.
The threshold variable determines how CongWindow can grow.

However, how does TCP know the right value for the congestion window? While the
value for AdvWindow is explicitly sent by the receiver during TCP connection setup, there is
no entity to send a suitable value for CongWindow to the sender. Instead, the sender estimates
the level of congestion in the network and accordingly sets a value. Depending on the level
of congestion, the value for congestion window is varied, which is decreased when the level
of congestion goes up and increased when the level of congestion goes down.

Now the obvious question is how does the source detect congestion? We know that a lost
packet triggers TCP timeouts. Such a packet loss can occur due to noise in the transmission
line or as a result of congestion in the intermediate routers. With recent advances in trans-
mission technologies, it is now relatively rare that the packet is dropped because of an error
during transmission. Thus, TCP assumes that timeouts are caused by congestion and reduces
its rate of transmission.

Slow Start

TCP uses a three-way handbook to establish a connection. Once a TCP connection is estab-
lished between the two end systems, the application process at the sender writes bytes to the
sender’s TCP send buffer. TCP grabs chunks, which can be at most the size of the maximum
segment size (MSS), encapsulates each chunk within a TCP segment, and passes the segments

22.2.2

CHAPTER 22 Packet Queueing and Scheduling 13

to the network layer for transmission across the network. The TCP congestion window reg-
ulates the times at which the segments are sent into the network (i.e., passed to the network
layer).

Initially, CongWindow is set equal to one packet. It then sends the first packet into the
network and waits for an acknowledgment. If the acknowledgment for this packet arrives
before the timer runs out, the sender increases CongWindow by one packet and sends out
two packets. Once both these packets are acknowledged before their timeouts, CongWindow
is increased again by two. Now the size of CongWindow is four packets and, thus, the sender
transmits four packets. Such an exponential increase continues as long as the size of Cong-
Window is below a defined slow start threshold and acknowledgments are received before
their corresponding timeouts expire. After reaching the threshold, the increase is linear until
MaxWindow size is reached.

We can see that during this phase the size of the congestion window increases exponen-
tially, i.e., the congestion window is initialized to one packet; after one RTT the window size
is increased to two packets; after two RTTs the window is increased to four packets; after
three RTTs the window is increased to eight packets; and so on. This mechanism is referred
to as slow start. If slow start increases the congestion window exponentially, why it is then
called slow start? Before slow start was developed, the sender, after establishing the con-
nection, immediately starts transmitting the entire AdvWindow worth of packets at once.
While there could be enough bandwidth in the network, the intermediate routers might not
have enough buffers available to absorb this burst of packets. Thus, slow start was intro-
duced so that the packets are spaced enough to avoid this burst. In other words, the slow
start is considered much slower than transmitting an entire AdvWindow of packets all at
once.

The slow start phase ends when the size of CongWindow exceeds the value of a defined
congestion threshold. Once the congestion window is larger than the current value of the
threshold, the congestion window grows linearly rather than exponentially. Specifically, if W
is the current value of the congestion window, and W is larger than threshold, then after W
acknowledgments have arrived, TCP replaces W with W + 1. This has the effect of increasing
the congestion window by one in each RTT for which an entire window’s worth of acknowl-
edgments arrives. This phase of the algorithm is called congestion avoidance.

The congestion avoidance phase continues as long as the acknowledgments arrive before
their corresponding timeouts. But the window size, and, thus, the rate at which the TCP
sender can send, cannot increase forever. Eventually, the TCP rate will be such that one of the
links along the path becomes saturated, and at which point, loss (and a resulting timeout at
the sender) will occur. When a timeout occurs, the value of threshold is set to half the value of
the current congestion window, and the congestion window is reset to one MSS. The sender
again grows the congestion window exponentially fast using the slow start procedure until
the congestion window hits the threshold.

Additive Increase, Multiplicative Decrease

Suppose the end-to-end path between two hosts is congestion-free; we still then have the
question of how to adjust window size in order to regulate the rate at which the end
hosts transmit. TCP uses a principle called additive increase, multiplicative decrease (AIMD)

22.2.3

14 22.2 TCP Congestion Control

for rate adjustment. This means that when increasing the rate, TCP uses an additive prop-
erty, and when decreasing the rate, it uses a multiplicative property. To be more specific, TCP
rate regulation is governed by the parameter, CongWindow; this parameter is increased in
additive chucks to increase the rate. Suppose the current CongWindow is 500 bytes and the
increase size is 30 bytes, then CongWindow will become 530 bytes. The additive property is
less aggressive and is helpful in congestion avoidance. However, when there is congestion,
which is indicated by loss of packets, TCP reduces the window size by half. Thus, if we are
currently at effective window size of 530 bytes, then it becomes 265 bytes. Note that AIMD is
a general principle; TCP window size must still remain valid such as being not higher than
AdvWindow. Thus, several boundary conditions are checked; in fact, in actual implementa-
tion, the code is intertwined with slow start, congestion avoidance, and fast retransmit and
fast recovery, which will be discussed in the next section. For detailed illustration of various
parameters, and the relation between TCP segment size, maximum segment size, and the
windowing parameters maintained in byte count, see [668].

Fast Retransmit and Fast Recovery

The algorithms described so far, AIMD and slow start, are considered the main TCP conges-
tion control mechanisms. In this section, we consider relatively newer features.

In early implementations of TCP, the sender retransmitted an unacknowledged packet
only after the expiration of its timeout. It was observed that the coarse-grained implemen-
tation of TCP timers led to long periods of time during which the connection went dead.
Thus, a new mechanism called fast retransmit was introduced that allows the retransmission
of a lost packet even if the timeout for that packet has not expired. The fast retransmit mech-
anism does not replace the timeout mechanism of TCP, but it works in parallel to improve
performance.

The idea behind fast retransmit is straightforward. Every time a packet arrives out of or-
der because the previous packet was lost or delayed, the receiver sends an acknowledgment
that is the same as the one sent the last time. The subsequent transmissions of the same ac-
knowledgment are called duplicate ACKs. When the sender detects a duplicate ACK, it knows
that the receiver must have received a packet out of order, implying that the earlier packet was
lost or delayed. To detect reliably the packets that are lost, the sender waits until it sees some
number of duplicate ACKs before retransmitting the missing packet. In practice, the sender
waits until it has seen three duplicate ACKs, then retransmits the packet without waiting for
its timer to expire.

Finally, there is another improvement we can make. Using the fast retransmit mechanism
the sender detects a possible loss of a transmitted packet, implying congestion, and therefore
it is necessary to reduce its congestion window accordingly, after the transmission of the lost
packet. However, when a fast retransmit algorithm is used and when duplicate ACKs are
received by the sender, it means that the packets are still flowing to the receiver. How can
it be safely deduced? The generation of duplicate ACKs at the receiver is triggered only on
a packet arrival. This indicates that serious network congestion may not exist and the lost
packet could be a transient condition. Thus, the sender, instead of reducing its transmission
rate sharply using slow start, decreases the congestion window by half and performs only
additive increase.

22.3

22.3.1

CHAPTER 22 Packet Queueing and Scheduling 15

Implicit Feedback Schemes

With the above background on TCP congestion control, we are now ready to discuss router
congestion control schemes. In general, router congestion control schemes can be classified
as implicit feedback schemes and explicit feedback schemes. The main difference in these
approaches is that implicit schemes trigger packet dropping while explicit schemes are noti-
fications generated by routers to end hosts to “slow down.”

Before we discuss implicit congestion schemes, we need to ask the following question:
is packet dropping required because buffers are not sized properly? Recall that we discussed
earlier about buffer sizing from a traffic engineering point of view in Section 7.2.3. However,
congestions do occur in live networks due to sudden increase in traffic; thus, a buffer sized
for normal circumstances might not be adequate for congested situations. This could mean
that buffer sizes should be increased further to allow for sudden bursts in traffic; however,
there is a downside to having too large of a buffer than required—it can unduly hold packets
in a buffer, thus increasing overall latency. That is, it is important to size buffers properly and
allow packet dropping intelligently for congested situations.

In implicit feedback schemes, the source detects the existence of congestion by making lo-
cal observations. Some of these local observations include timeouts when acknowledgments
are not received, delayed reception of acknowledgments, arrival of duplicate acknowledge-
ments, and so on. The main underlying causes for these observations are packet delay and
packet loss. If the delay experienced by a packet is higher than expected from a source’s per-
spective, it is as good as a packet being lost. As a result, in these schemes the routers simply
drop packets during congestion and expect the source to respond to these lost packets by
slowing their transmission rate.

Drop Position

This design choice pertains to the position in the queue from which the packet needs to be
dropped. For a queue, there are three choices; front of the queue, tail of the queue, and any one
of the intermediate positions between them. We examine these choices in detail and identify
its advantages and disadvantages.

DROP FROM FRONT

In this case, the space for the arriving packet is created by discarding the packet currently at
the head of the queue, as shown in Figure 22.4. While it might sound simple, drop from front
is complex to implement. It requires explicit queue manipulation to remove an existing entry,
thus requiring extra cycles of processing time. However, the main benefit of dropping from
the front of queue is that it expedites TCP’s congestion avoidance behavior. That is, drop from
front causes the destination to “see” missing packets in its stream earlier.

In fact, drop from front enables a congestion signal being expedited by as much as one
RIT time earlier than would be the case with tail drop (where packets are dropped from
the tail of the queue). As a result, a few sources whose packets are near the front at the on-
set of congestion receive earlier congestion notification (that is, they timeout earlier). The
ensuing reduction of transmit rate from these sources allows packets from other sources to
successfully enter and leave the queue. Thus, fewer sources losing packets greatly reduces or
eliminates later overreaction by more sources.

16 22.3 Implicit Feedback Schemes

Arriving Packet Full Queue
CI)—C JCJC J0C] —
Tail Front
Drop from Front
FIGURE 224 Drop from front.
Full Queue
Arriving Packets

. J JuUL J—

Tail Front

Drop from Tail

FIGURE 22,5 Drop from tail.

You might wonder why the source timeouts as much as one RTT earlier. This is because of
router buffers being sized to hold one RTT worth of traffic. Assume, for the sake of discussion,
there are two packets from the same source; one is at the front of the queue while the other
is at the end of queue. In the worst case, the packet at the end will be dropped; after all, the
packets in the router buffer have been serviced which would consume as much as one RTT.
Therefore, if the packet at the front of the queue is dropped, the source would have been
notified of congestion one RTT earlier.

TAIL DROP

Another discipline for managing queue length in a router is to determine the maximum
length for each queue a priori, accept packets until the queue is full, and then discard subse-
quent packets arriving at the tail of the queue. The dropping behavior continues until space is
available in the queue, when packets at the head of the queue are transmitted. This discipline
is known as drop from tail, or simply tail drop, as the packet that arrived most recently gets
discarded when the queue is filled up; this is illustrated in Figure 22.5. The major advantage
of tail drop is that it is easy to implement as packets can be dropped simply by not inserting
them into the queue. However, it suffers from a few major disadvantages [88].

In some situations, a few flows sharing the output link can monopolize the queue during
periods of congestion. Such flows generate packets at a higher rate that can easily fill up the
queue. Consequently, the packets from flows generating packets at substantially lower rates
have a higher probability of arriving at the queue when it is full and gets discarded. Hence,
these lower rate flows are said to be “locked out” by a few higher rate flows.

22.3.2

CHAPTER 22 Packet Queueing and Scheduling 17

In a TCP flow, packets often arrive in bursts despite constraint by a window size. With
tail drop, when such bursts from several TCP flows arrive at a queue that is full or almost full,
their packets will be dropped. As a result, all the flows throttle back by decreasing their trans-
mit window size almost simultaneously. Now all the senders steadily increase their transmis-
sion window size in tandem. As a result, the sender sends more packets and again the router
queue will overflow, leading to dropping of more packets. This recurring pattern where many
senders reduce and increase their transmission rates at the same time is referred as global syn-
chronization. Such a phenomenon causes drastic oscillations in traffic, resulting in low utiliza-
tion of the link bandwidth and of course, reducing the overall network throughput.

Since tail drop signals congestion only when the queue is full, the queues tend to remain
full or nearly full for sustained periods of time. As a result, the packets at the end of the
queue wait longer before transmission, which increases the latency of flows. Simply making
the queue shorter will decrease the latency, but it defeats the purpose of buffering, which is to
accommodate brief bursts of traffic without dropping packets unnecessarily. Because of such
disadvantages, tail drop is used as the default mechanism for congestion control in the router,
if nothing is configured.

Proactive versus Reactive Dropping

This design choice concerns when a packet should be dropped. If packets are dropped even
before the queue is full, it is referred as proactive dropping. Such proactive dropping of packets
implicitly conveys to the end hosts when congestion is imminent. This early notification is
useful in networks where the end hosts react by reducing their transmission rate. On the
other hand, if the end hosts do not reduce their rate, the router queues will become full and
the packets will be dropped anyway. This is called reactive dropping as the packets are dropped
in reaction to the queue buffers being filled.

For aggregated queues, two variants of proactive dropping have been outlined in the lit-
erature: early random drop [284] and random early detection [227]. In early random drop, when
the queue length exceeds a preconfigured threshold, the router drops each arriving packet
with a fixed drop probability. Intuitively, as aggressive sources send more packets, dropping
an arriving packet randomly will quite likely discard packets from these sources than a packet
from one of well-behaved sources. Thus, this scheme attempts to protect the bandwidth re-
ceived by the well-behaved sources while penalizing the aggressive ones. However, it has
been shown in [762] that this scheme was not successful in controlling misbehaving users.
Some of the shortcomings of early random drop are improved in random early detection
discussed in the next section.

The proactive dropping of packets is called active queue management (AQM) in the litera-
ture. By dropping packets before buffers overflow, AQM allows routers to control when and
how many packets to drop. Active queue management provides the following benefits:

e First, it reduces the number of packets dropped in the router. As the Internet traffic is
bursty, a router might not be able to absorb these bursts if most of the queue space is com-
mitted to steady-state traffic. By keeping the average queue length small, AQM provides
the capability to absorb traffic bursts without discarding packets.

224

18 22.4 Random Early Detection (RED)

e Second, it eliminates the global TCP synchronization that results in more efficient uti-
lization of network. Second, by keeping the average queue size small, AQM controls the
queueing delay experienced by the packets flowing through it. This is significant for in-
teractive applications as their performance largely depends on minimizing the end-to-end
delay. Finally, it prevents the aforementioned lockout behavior by ensuring that there is
buffer space available for an incoming packet most of the time.

Random Early Detection (RED)

The basic idea behind random early detection (RED) [227] is to detect incipient congestion
early and convey congestion notification to the end-hosts, allowing them to reduce their trans-
mission rates before queues in the network overflow and packets are dropped. A router
implementing RED continuously monitors the average queue length; when this exceeds a
threshold, it randomly drops arriving packets with a certain probability, even though there
may be space to buffer the packet. The dropping of a packet serves as an early notification to
the source to reduce its transmission rates.

The RED algorithm uses the exponential weighted moving average approach (see Ap-
pendix B.6) to calculate average queue length Qqye and to determine when to drop packets.
The average queue length is compared with two queue length thresholds, a minimim thresh-
old Omin and a maximum threshold, triggering certain activity. When a packet arrives at the
queue, the RED algorithm compares the current average queue length Q,y, with these two
thresholds, Qmin and Omax (Figure 22.6) according to the following rules:

e If average queue length Qayg is less than the minimum threshold, Qpin, no drop is taken
and the packet is simply enqueued.

e If average queue length Q,y, is greater than the minimum threshold, Qnin, but less than
the maximum threshold, Qmax, it indicates some congestion has begun and the packet is
dropped with some probability P,.

e If average queue length Qayg is greater than the maximum threshold, Omax, it indicates
persistent congestion and the packet is dropped to avoid a persistently full queue.

The probability P, is a function of average queue length Q. and is often referred to
as the drop probability. As shown in Figure 22.7, the drop probability is zero when average
queue length Q,y, is less than or equal to Q. It increases linearly when Q,y, is between

Packet Queue

Qmax Qmin
Arriving Packets

DCI0— ﬁ@[)L 00—

Q

avg

FIGURE 22.6 RED thresholds on a queue.

CHAPTER 22 Packet Queueing and Scheduling 19

1]

=
]
3

Drop
Probability

Q
Average Queue Length

min

FIGURE 22.7 Illustration of the relationship among Omin, Omax, Qavg, and Prax.

the thresholds Qnin and Omax. When Qayg equals Omax, the drop probability reaches Ppax,
at which point it jumps to unity. This indicates that the gentler approach of probabilistically
dropping packets is not effective, and aggressive measures need to be taken, that is, dropping
all arriving packets.

By using a weighted average, RED avoids overreaction to bursts and instead reacts to
longer-term trends. The average queue length captures the notion of congestion more accu-
rately than the instantaneous queue length. The bursty nature of Internet traffic can fill up
a queue quickly for a very short period of time, which then becomes empty again. Thus, it
is not appropriate to conclude that the router is congested. As a result, the computation of
average queue length uses a weighted running average w to detect persistent congestion by
filtering short-term variations in the queue length.

While RED is in operation, it is definitely possible that the instantaneous queue length
can be much longer than the average queue length Q,y,, especially in the presence of bursty
traffic. In such situations, when a packet arrives to the router and if the queue is full, then it
will be dropped. When this happens, RED is operating in tail drop mode.

An interesting aspect of RED is that it provides some sense of fair resource allocation
among flows, due to its random nature. However, the fairness might not be guaranteed to be
precise. Because RED drops packets randomly, the probability that a packet is dropped from
a particular flow is roughly proportional to the share of bandwidth the flow is getting at that
router. Since high-bandwidth flows send a large number of packets through the router, it is
providing more candidates for random dropping, thus penalizing them in proportion.

The four parameters that govern the operation and behavior of RED—minimum thresh-
old Omin, maximum threshold Qmax, drop probability Pmax, and weight « used by exponen-
tial weighted average—constitute a RED drop profile. Realizing RED functionality in a router
requires the implementation of two algorithms. The first algorithm computes the average
queue length on every packet arrival, while the second algorithm calculates the drop prob-
ability that determines the frequency of packets dropped by the router, given the level of
congestion. The following sections examine these in detail.

22.4.1

224.2

20 22.4 Random Early Detection (RED)

Computing Average Length of Queue

The average queue length, Qayg, is computed using an exponential weighted moving average
(refer to Appendix B.6) as

Qavg = (1 =w) X Qavg + W x Qsample (22.4.1)

where 0 <w < 1. Qsample Tepresents the actual length of the queue at the instant the measure-
ment is made. In most software implementations, Qsample is measured every time a packet
arrives at the router. In hardware, due to high speed requirements, it is calculated at some
fixed sampling interval.

Looking at Eq. (22.4.1) more closely reveals that if w is small, even if Qgample is large, Qavg
will only increase by a small amount. As a result, Qayg will increase slowly and a significant
number of samples of Qsample Will be required to increase it substantially. This leads to the
detection of long-lived congestion rather than short-term congestion that can come and go.

If w is too small, then Qayg responds too slowly to changes in the actual queue length
and is unable to detect the initial stages of congestion. Alternatively, if w is too large, the
average queue length will not filter out short-term congestion. Thus, the choice of an appro-
priate value for w depends on Op, and the amount of burstiness desired. Given a minimum
threshold Onin, and the desired level of burstiness as L packets, then w should be chosen to
satisfy the following equation [227]:

1—w)d+b 1
L+1+ % < Omin- (22.4.2)

The left term of the inequality represents the average queue length after L packet arrivals,
assuming the queue is initially empty with an average queue length of zero and the queue
length increases from 0 to L packets. The inequality implies that if w is chosen appropriately,
the router can accept a burst of up to L packets and still manage to keep Qayg below the
minimum threshold Qmin-

Recall that RED drops packets to signal congestion to TCP flows. Consider a router,
dropping a packet from a TCP connection and immediately forwarding subsequent pack-
ets from the same connection. When these packets arrive at the destination, it sends dupli-
cate ACKs to the sender. When the sender sees these duplicate ACKSs, it reduces its window
size. Thus, the time elapsed between the router dropping a packet from a connection and the
same router seeing some reduced traffic from the affected connection should be at least one
RTT. Practically speaking, there is not much return in having the router respond to conges-
tion.

Computing Drop Probability

A straightforward approach for computing the packet drop probability uses a linear function
of the average queue length as shown below:

P, = ﬁmax (Qavg - Qmin)/(QmaX - Qmin)~ (22-4~3)

In this approach, as the average queue length increases, P, increases proportionally and
reaches a maximum allowable value, Pyax, when the average queue length reaches the maxi-
mum threshold Omax. Note that Pnax is a configurable value in the range, 0 < Pmnax < 1. Even

224.3

CHAPTER 22 Packet Queueing and Scheduling 21

though it is simple to understand and implement, use of this approach leads to dropping
packets that will not be well distributed in time. Instead, it is likely to drop more than one
packet in a burst of closely spaced packets (clusters) from a source. As the packets of a flow
tend to arrive in bursts, such a behavior is likely to cause multiple drops in a single flow.
While a single drop per RTT will suffice to cause a flow to reduce its transmit window size,
the desirable behavior is to affect many flows so that they can reduce the rate of transmis-
sion, thereby mitigating the congestion or reducing the likelihood of congestion occurring
immediately.

To reduce the likelihood of such scenarios, the calculation of packet-dropping probability
takes into account the number of packets queued since the last drop and that the packet is
marked proportional to its size compared to the maximum packet size, MaxPacketSize. This
enhanced approach uses the following adjusments for computing the drop probability P,,.

Py = Fmax(Qavg - Qmin)/(Qmax - Qmin) (22'4'4a)
Pp = Pp x PacketSize/MaxPacketSize (22.4.4b)
P, = Pp/(1 — count x Pp). (22.4.4¢)

In Eq. (22.4.4), count keeps track of the number of packets queued since the last drop. As
implied by the equation, the probability P, increases as count increases. This makes a drop
increasingly likely as the time since the last drop increases. Once a packet is dropped, the
count is reset to zero. With this approach, closely spaced packet drops are relatively less likely
than widely spaced drops.

RED can be efficiently implemented in hardware with only a small number of add and
shift instructions on each packet arrival. The implementation involves the efficient compu-
tation of average queue size, calculating the packet-dropping probability, and arriving at a
decision on whether to drop a packet.

First, the average queue length can be calculated based on the following equation. Rear-
ranging, Eq. (22.4.1), we get

Qavg = Qavg + W(Qsample — Qavg)- (22.4.5)

If w is chosen as a negative power of 2, i.e., w =27" where n is configurable. The advantage
is that this can be implemented with a few shift operations and two additional instructions.

Setting Onin and Omax

Consider the setting of values for Qpin and Omax. These values to a large extent are deter-
mined by average queue length, Qays. The choice of values for Oy, determines how effi-
ciently the output link is utilized. If the traffic is fairly bursty, smaller values for Qpin will
lead to packet dropping, thereby underutilizing the output link. As a result, Qnin should be
chosen large enough such that the router will be able to absorb bursts as well as keep the link
utilization at an acceptably high level.

The threshold Omax determines the delay experienced by a packet as it transits through
the router. A large value for Omax means that more packets will be buffered in the queue
ahead of the newly arrived packet, and they must be transmitted before the newly arrived

22.5

22.5.1

22 22.5 Variations of RED

packet. This introduces significant delay. Thus, the choice of values for Qmax depends on the
maximum average delay that can be allowed by the router.

Also, the difference between the two thresholds Omax — Omin should be larger than the
typical increase in the calculated average queue length in one RTT. Given the traffix mix on
today’s Internet, a useful rule of thumb is to set Omax to at least twice Qpin. During periods
of high load, since the average queue length is expected to vary between the two thresholds,
there should be enough free buffer space above Qmax to absorb bursts in the traffic without
forcing the router to enter tail drop mode.

Variations of RED

Due to the bursty nature of Internet traffic, the queues can fill up quickly and then become
empty again. In such cases, the queue can be empty most of the time except during such
period of burstiness. Furthermore, because the thresholds are compared with the average
queue length, no dropping of packets takes place even when the instantaneous queue length
is quite large.

Weighted Random Early Detection

The RED algorithm can be considered to be fair for all the flows passing through a single
queue, where flows belong to the same traffic class. The flows from which the traffic needs to
be discarded are chosen randomly without any bias. While fairness is desirable, often there
are situations that need to introduce unfairness. To illustrate such needs, consider the follow-
ing example of packet marking.

Example 22.3 Packet marking.

Consider the scenario where packets are marked as they enter the ISP network. The
process of marking distinguishes packets as either out-of-profile or in-profile. The out-of-
profile packets represent the excess traffic from a customer than the agreed bandwidth with
the ISP. On the other hand, the in-profile packets confirm to the agreed bandwidth. The inten-
tion behind distinguishing the packets is to provide delivery guarantees for in-profile packets
while out-of-profile packets are delivered best effort. When the ISP network is lightly loaded,
out-of-profile packets would most likely get through the network, thereby using the spare
bandwidth. However, during periods of congestion, these out-of-profile packets are dropped
in preference to in-profile packets. A

The RED algorithm has been observed to be unfair in bandwidth sharing when there
are different traffic classes [410]. Furthermore, as seen from the example, when congestion is
anticipated, the router might need to enforce different packet-dropping behavior for different
types of traffic (such as in-profile and out-of-profile packets). This translates into defining
different drop profiles for different queues, or for different types of traffic in the same queue.
Recall from Section 22.4 that a RED profile specifies the parameters Qmin, Omax, Pmax, and w
that characterize the behavior of RED.

Weighted random early detection (WRED) attempts to achieve this by augmenting RED
to use additional information from the packet. Such additional information in the packet can

CHAPTER 22 Packet Queueing and Scheduling 23

Out-of-profile %acke’ts In-profile packets
.. »

Drop
Probability

Qminl QminZ Qmaxl QmaxZ 100%

Average Queue Length

FIGURE 22.8 Weighted random early detection with in-profile and out-of-profile
packets.

include but is not limited to source and destination address, source and destination ports, pro-
tocol flags and IP precedence/TOS bits. This information provides a context for the packet.
Based on the context of the packet, a RED drop profile is chosen for packet dropping. For the
example discussed earlier, an aggressive drop profile with higher dropping probability can
be assigned for out-of-profile packets, while a less aggressive drop profile with lower drop-
ping probability governs in-profile packets. Two such profiles are shown in Figure 22.8 where
Omin1, Omax1 and Ppax1 represent the aggressive drop profile, while the others with (Omax2,
Omax2, and Pay2) specify the less aggressive drop profile. In the figure, the aggressive profile
is shown with dashed lines and the less aggressive profile with solid lines. Such modification
of the drop probability depending on the context of the packet is referred as weighting; hence,
this variation of RED is known as weighted RED or simply WRED.

On receiving packets, the router classifies them based on the contents of their headers
using fast classification algorithms (discussed in Chapter 16) to establish context. This con-
text affects how the packet is processed in the subsequent stages inside the router. When the
packet arrives in the egress linecard, it is appended to the appropriate outgoing queue. Now
the context information of the packet is used for choosing the appropriate drop profile, which
determines how to drop the packet, if needed. Now let us look at two examples that illustrate
how WRED is used in practice.

Example 22.4 Assigning RED drop profiles to each queue.

Consider a router that is configured to use three queues for sharing the output link O
(Figure 22.9(a)). Each of these queues carries traffic of different priorities. The queue R car-
ries high-priority traffic, while queues S and T carry medium-priority and low-priority traf-
fic, respectively. Each queue shares a portion of the bandwidth of the outgoing link. For the
high-priority traffic, the network administrator might be interested in dropping fewer pack-
ets compared to medium-priority traffic and lower-priority traffic. Thus, the administrator
configures different drop profiles for each queue. In this case, a less aggressive drop profile
is associated with queue R and a progressively more aggressive profile, one for each of the
queues S and 7.

24 22.5 Variations of RED

RED
Drop Profiles Queue R - 25% bandwidth

L/ C 30300

Queue S - 25% bandwidth

gt (| f CO0C Ol)00

Queue T - 50% bandwidth

/| C0C3C_30C 200

Packet Departures

(a)
TCP-RED Non TCP - RED
Drop Profiles Drop Profiles Queue R - 25% bandwidth

/] £ D@DD\

Queue S - 25% bandwidth

meny (7]) O0CIC 300

Queue T - 50% bandwidth

/| /] O00C2C_ 30200

Packet Departures

(b)

FIGURE 229 Two packet drop profiles for weighted random early detection (WRED).

Consider another scenario where the network administrator is interested in further distin-
guishing the traffic in each queue into TCP traffic and non-TCP traffic. Furthermore, he/she
desires that in each queue more non-TCP traffic should be dropped rather than TCP traffic.
In such cases, the administrator has to configure two drop profiles per queue with the appro-
priate drop probability. Depending on the type of the traffic (which is typically embedded in
context of the packet), the appropriate drop profile will be applied. This scenario is illustrated
in Figure 22.9(b). A

While WRED allows dropping of packets depending on their context, it does not dynam-
ically adapt the dropping probability depending on amount of traffic. In the next section, we
describe another variant of RED called adaptive RED that provides this flexibility.

22.5.2 Adaptive Random Early Detection

In basic RED, the decision about when to drop a packet is determined by the parameters in the
RED profile—Qmin, Omax, W, and Prax. However, choosing the appropriate values for these
parameters has proven difficult as they are highly dependent on the nature and burstiness of
the traffic. Let us look at a few scenarios on how the choice of these values affects the average
latency experienced by a packet and the network throughput.

First, consider the scenario in which the output link is lightly congested and/or Prax is
configured to be high. In this case, Qayg hovers close to Qi and, thus, the queueing delay
experienced by a packet will be low. Similarly, when the link is highly congested and/or Pmax

CHAPTER 22 Packet Queueing and Scheduling 25

is low, Qayg Operates closer to Qmax or even above QOmax. This results in a packet experiencing
higher queueing delay.

Now consider another scenario in which an output link is congested due to a large num-
ber of connections flowing through it. In such cases, packets should be dropped from suf-
ficiently large numbers of connections so that the offered traffic load from those sources is
reduced considerably. However, overly aggressive drop behavior could result in underuti-
lization of the network bandwidth as many more sources will back off their transmission
rates. It has been observed that when there are N connections sharing the link, the effect of
any given RED-induced packet drop is to reduce the offered load by a factor of (1 — 1/2N).
Thus, as N increases, the impact of a packet drop decreases and the RED algorithm needs
to be aggressive. Otherwise, it would degenerate into simple tail drop. When N is small, the
impact of packet drop is large and RED should be conservative. Otherwise, it will lead to
underutilization of network bandwidth.

Example 22.5 Impact of the number of connections on throughput.

Assume that the output link capacity of 10 Mbps is shared equally among 100 simulta-
neous TCP connections. A RED-induced packet drop from a single connection reduces its
transmission rate and therefore the offered load reduces to 9.95 Mbps. Alternatively, if only
two connections share the link, RED-induced packet drop from one of the connection reduces
the offered load to 7.5 Mbps. A

We can see from these scenarios that the average queueing delay and output link uti-
lization are sensitive to the traffic load and, therefore, not predictable in advance. To achieve
predictable average delays and maximum utilization of the outgoing link, the RED profile
parameters must be constantly adjusted depending on the current traffic conditions.

Adaptive RED attempts to address these limitations by allowing RED to modify its pa-
rameters based on traffic load. The idea behind this algorithm is to adjust the value of Ppax to
restrict the average queue length Q,y,; between Qnin and Qmax. In particular, it scales Prax by
constant factors of « and B depending on whether it is less than QOnin or greater than Qmax.
The algorithm is outlined below.

If the average queue length is less than Qnin, then RED is too aggressive in dropping
packets. Thus, Prax is decreased by Pmax x B. The decrease in drop probability reduces the
number of packets being dropped, thus allowing the average queue length Qay to increase
beyond Qmin but less than Omax. In the other case, when the average queue length is greater
than Qmax, then RED is too conservative and Pmayx is increased by Pmax X @. The increase in
drop probability increases the number of dropped packets and reduces the average queue
length Qayg to less than QOmax. The relationship between the average queue length Q,y, and
drop probability Ppay is illustrated in Figure 22.10. The algorithm is run periodically using a
predetermined time interval, and the constants « and g are supplied by the network operator.

To be more specific, recall that in basic RED, the choice for w that tracks the average queue
length should be such that it filters transient congestion and still does not react too slowly to
long-term congestion.

The rate at which this congestion could have built up depends partially on how many
TCP connections pass through the outgoing link. If there are fewer connections sharing the
link, then the congestion will build up relatively slowly and w should be low. However, a low

22.6

26 22.6 Explicit Feedback Schemes

me

Drop
Probability £

o]

mq

o
<

Q
Average Queue Length

min

FIGURE 22.10 Adaptive random early detection (with different threshold values for
Prax for light and aggressive traffic).

value of w for a large number of connections would mean less aggressive dropping behavior,
leading to queue overflow. Conversely, choosing a high value for w to enable fast RED be-
havior with many TCP connections can result in the drop behavior being overly aggressive
in the presence of only a few flows. This leads to reduced output link utilization.

Explicit Feedback Schemes

Various schemes for packet dropping discussed in the previous section have been implicit,
that is, use packet loss to indicate congestion. The packet losses are inferred at the end hosts
and in response adjust their transmission rates. Such schemes do not require explicit help
from the intermediate routers except the dropping of packets, which the router must do any-
way when its queues are full. While these schemes are simple and easy to develop and deploy
in a network, they suffer from a few disadvantages [737]:

e Dropping of packets wastes network resources used for carrying the packet from its source
to the router experiencing congestion.

e Feedback schemes based on packet drops are based on an assumption about the network,
interpreting packet loss as a sign of congestion. This might not be valid for all networks
such as wireless networks.

A departure from these schemes is to explicitly communicate to the source when con-
gestion occurs to reduce the transmission rate. Such explicit notifications can be categorized
depending on the direction as:

e Backward—Here a congested router generates notification to the sender that travels in the
opposite direction of the data traffic. Notification can be piggybacked on the header of
the data packet bound for the sender (probably from the receiver), or a separate packet is
generated and transmitted to the sender.

22.6.1

22.6.2

CHAPTER 22 Packet Queueing and Scheduling 27

e Forward—In this case, the router generates notification to the sender, which flows in the
direction of the traffic. This notification is carried by the data packets to the receiver. The
receiver piggybacks the packets to the sender to echo the notification to the sender. Instead
of echoing, the receiver can exercise the flow control at a higher layer protocol so that the
sender reduces it transmission rate.

Now let us discuss these schemes in detail.

Choke Packets

In this approach, whenever a router experiences congestion, it sends explicit notifications
to sources directly to reduce their transmission rate. These notifications could carry further
details such as the percentage by which the source should reduce the rate or an upper bound
on the rate the source should transmit. Routers implement a variation of this approach called
source quench, which conveys to the source that the congestion has occurred and hence it
should reduce the rate.

A source quench message could be generated by a router in two scenarios. In the first
scenario, whenever a router discards a packet, it may send a source quench message. In the
second scenario, the router may send the source quench message when the queue buffers
exceed a certain threshold rather than waiting until the queues are full. This means that
the packet that triggered the source quench message may be delivered to the destination.
A source quench message is carried by ICMP.

The benefits of this approach are twofold. First, it provides the fastest feedback to the
sources to reduce their rate. This has the benefit of reducing congestion as quickly as possible.
Second, as the router that experiences congestion generates this feedback, the information is
more precise. However, there are disadvantages from system design perspective. The router
has to generate a new packet on the data path, which is typically implemented in hardware
for high-speed requirements. To reduce such complexities in the hardware design, the data
path informs the control processor to generate the source quench message, which is injected
into the data path for forwarding it to the source.

Explicit Congestion Notification

Explicit congestion notification (ECN) is another feedback scheme that indicates congestion
information by marking packets instead of dropping them. The destination of marked packets
returns this congestion notification to the source. As a result, the source decreases its transmit
rate. The implementation of ECN uses an ECN-specific field in the IP header with two bits—
the ECN-capable Transport (ECT) bit and the Congestion Experienced (CE) bit. These two
bits are mapped to bits 6 and 7 of the DSCP field in the IP header as shown in Figure 22.11.
Both ECT and CE bits allow for four ECN field combinations—"“00,” “01,” “10,” and “11.”

The ECN field combinations “01” and “10” are set by the data sender to indicate that
the endpoints of the transport protocol are ECN capable. The non-ECT combination “00”
indicates a packet that is not using ECN. The CE combination “11” is set by a router to indicate
congestion to ECN-capable host systems. Table 22.1 summarizes each of the ECT and CE bit
combination settings, including a brief note about how it is used.

28

22.6 Explicit Feedback Schemes

1 2 3 4 5 6 7

Differentiated Servicés Code Poitit (DSCP)

ECT CE

FIGURE 2211 ECN field in the differentiated services field of IP packet header.

TABLE 22.1 ECN bit setting.

ECE Bit | CE bit Remark
0 0 Not ECN-capable
0 1 ECN-capable end hosts
1 0 ENC-capable end hosts
1 1 Congestion experienced

The primary motivation for using two combinations for ECT is twofold. First, it allows
a data sender to verify that intermediate routers and switches are not erasing the CE com-
bination. Second, it allows a data source to check whether the data receivers are properly
reporting to the sender the receipt of packets with the CE combination as required by the
transport protocol.

To identify congestion and mark the packets, routers use the same algorithm as RED but
modified to identify ECN field combinations. The modified algorithm is described as follows:

e If the queue occupancy is below Opin, the packets are transmitted independently of
whether ECN is enabled or not. This is similar to the normal RED algorithm.

e If the queue occupancy is between Qpin and Omax, then the ECN field in the IP header is
examined. Depending on the combination that occurs in the ECN field, one of the follow-
ing scenarios can occur:

If the ECN field contains “00,” then the end host systems are not ECN capable and the
packet might be dropped based on the drop probability generated by the RED algo-
rithm. This behavior is identical to normal RED behavior as described in Section 22.4.

If the ECN field contains either “01” or “10,” then the RED algorithm determines
whether the packet should have been dropped based on the drop probability. If the
decision is to drop, then the ECN field is set to “11” and the packet is transmitted.
Since ECN is enabled, the packet gets marked instead of being dropped.

If the ECN field contains “11,” then the packet is transmitted. It means that some up-
stream router has experienced congestion and this information needs to be passed on
further and ultimately indicated to the destination.

e If the queue occupancy is greater than Qmax, packets are dropped based on the drop prob-
ability generated by the RED algorithm. Again, this behavior is identical to the normal
RED behavior.

22.7

CHAPTER 22 Packet Queueing and Scheduling 29

For ECN to work, the end hosts using TCP and the intermediate routers should cooperate.
When a packet arrives with the ECN field containing “11,” the end host needs to recognize
that congestion has occurred and invoke the congestion control algorithm, which must be
the same as the congestion control response to a single dropped packet. Thus, when an ECN-
capable source running TCP receives a packet with the CE combination set, it should respond
by halving its congestion window. Such behavior is required for the incremental deployment
of ECN in end systems and routers.

ECN is similar to an earlier scheme known as the DECbit scheme [575]; however, there
are quite a few differences. In the DECbit scheme, the algorithm for generating the notifi-
cation is coupled with the actual mechanics of how to carry notification. However, ECN just
outlines how the congestion notification is carried to the destination and back to the source in
IP networks. It is not tied to any queue management algorithm and is typically used in con-
junction with RED. Further, the DECbit scheme uses only a single bit to indicate congestion
as opposed to two bits in ECN.

While the key benefits of ECN are similar to RED, there are additional benefits that ECN
provides. Unlike RED, which drops packets and wastes network resources used to forward
packets to the point where they experience congestion, ECN, by marking the packets, avoids
such resource waste. With ECN, TCP hosts can distinguish between packet loss due to trans-
mission errors and congestion signals. This could be especially useful in networks with rela-
tively high bit error rates. Also, since ECN uses bits in the packet header carrying data, it does
not add any additional traffic to an already congested network. Furthermore, ECN provides
flexibility to deploy incrementally in the Internet.

New Class of Algorithms

Even though RED is an improvement over traditional drop tail policies, there are a few short-
comings. The fundamental problem in RED is the use of queue length as an indicator of
congestion in the network and the assumption that larger queue length means larger number
of flows are competing for the bandwidth of the outgoing link. This need not be true. For
instance, a single flow can transmit at a rate greater than the bottleneck output link capacity
during a brief busy period. This could result in the buildup of queues that are easily as large
as the queue length with large number of flows. If the packet interarrival time follows the
exponential distribution (see Appendix B.10) the queue length relates directly to the number
of flows—a well-known result in queueing theory. However, this is not the case with Internet
and, thus, RED requires tuning a range of parameters to operate correctly under different
congestion scenarios.

Thus, instead of using the average queue length, the stochastic fair blue (SFB) algorithm
[222] is based on the history of the packet loss and link utilization for managing congestion.
Unlike RED, SFB maintains only a single probability P—this is used for deciding whether
an incoming packet should be dropped. If the queue continues to drop packets due to buffer
overflow, the drop probability is increased; it is decreased as the queue becomes empty or the
output link is idle.

The active queue management schemes discussed so far rely on end hosts being cooper-
ative. In other words, the end hosts react to congestion feedback by slowing the transmission
rate similar to TCP. However, new classes of applications such as video streaming do not

22.8

30 22.8 Analyzing System Behavior

always use TCP-like congestion control and, thus, do not react to the congestion feedback
from the network. Such applications could essentially consume an unfair amount of band-
width affecting responsive flows and leading to a high packet loss rate in the network. This
effectively reduces the throughput of the network. The idea behind these approaches is to
detect unresponsive flows and to limit their rates so that they do not impact the performance of
responsive flows [226].

You may note that datagram congestion control protocol (DCCP) [371] has recently been
proposed in the standards track in IETE. DCCP is meant for use in UDP-based applications
that might require timeliness as well as reliable delivery; for that, TCP-friendly rate control
and TCP-like congestion control have been proposed—see [229], [230].

Analyzing System Behavior

From the discussions presented so far, you can see that a combination of features might be
employed at a router that spans from scheduling to congestion control. This raises an im-
portant question: how do we know one scheme is better than another, and more importantly,
when multiple features are in place, how do we know whether the overall system is behaving
as intended?

From our earlier discussion, we know that a major trade-off to consider with any schedul-
ing discipline is to understand if it is fair to different traffic classes, yet can be implemented
with low time complexity. Typically, in this trade-off, low time complexity is preferable from
a router implementation point of view while the solution might not be fully optimal from
the scheduling discipline point of view. Thus, understanding the details of such a trade-off,
the time complexity analysis is important. Furthermore, it is important to get an idea on per-
formance impact. Since packet arrival is of a bursty nature, developing analytical models is
typically difficult. Thus, often such analysis entails doing a simulation model-based analysis
where realistic traffic streams are mimicked, and then doing a systematic assessment of the
behavior observed based on output of such simulations.

Similarly, to understand any implicit or explicit feedback mechanisms, performance
analysis is required. Typically in such analysis, traffic sources that follow TCP congestion
control mechanisms are considered. Since the overall analysis requires knowing how a router
handles congestions, often a network topology is needed for such studies. A commonly used
topology for such studies is known as the dumbbell topology—this means that several TCP ses-
sions share a bandwidth-limited bottleneck link with two routers [226]. You may note that
most such analysis avoids bringing the routing component into the picture. Why so? First,
in such studies, the goal is to understand the basic behavior without complicating it by con-
sidering too many dimensions. Second, in many instances, it is fair to assume that routing
would not change in a short window time frame during which one might be interested in
congestion behavior or buffer management. Yet, it is important to understand the relation
between congestion control and routing, for example, if there is a link or a router failure—
such analysis using simulation or a simulated environment, however, requires consideration
of many parameters or factors in a systematic manner [64], [581], [635].

What tools can you use for such analysis? From a simulation point of view, ns-2 [525] is a
widely popular public domain platform. There are commercial tools available from vendors
such as OPNET [536] that allow simulation of control mechanisms along with routing. In

22.9

CHAPTER 22 Packet Queueing and Scheduling 31

either type of platform, to try out a new area, writing a new software code segment is often
necessary. Certainly, any ability to test a concept through a virtual platform that operates on
the Internet is important. Several such approaches are currently ongoing [535], [568], [722].

Summary

We started this chapter with a discussion of different queueing disciplines that a router might
employ for scheduling packets. Critical issues are whether a discipline is fair to different traf-
fic streams, yet packet processing can be done efficiently. In this regard, deficit round-robin
and modified deficit round-robin schemes are found to be most preferred. It is, however,
important to note that most scheduling algorithms base their decisions using flow-level in-
formation in order to provide flow-based “fairness.” On the other hand, there are several
newer classes of applications that create multiple TCP flows in parallel. Thus, if we were to
consider at the level of application session-level fairness, application sessions with parallel
TCP flows can receive unduely higher fairness. For such situations, how a router can provide
application-level fairness is still an on-going research problem.

Congestion in routers can occur due to various factors. Thus, schemes are needed to han-
dle congestion, which can be broadly divided into implicit feedback schemes and explicit
feedback schemes. The implicit feedback schemes rely on the local observations at the end-
hosts to infer about congestion in the network, and drop packets at routers. However, explicit
feedback schemes rely on conveying the congestion notification explicitly.

We ended the chapter by including a brief discussion on how to analyze system behavior
when there are a variety of factors to consider in regard to congestion control and routers.

Finally, it is important to realize that there is a direct connection between how well a
network is traffic engineered along with buffer sizing and the congestion perceived by users.
For example, from the viewpoint of an ISP, its goal is to serve its customers with good quality
of service, which may be based on service level agreements; thus, the ISP wants to engineer its
network at an adequate performance level. For instance, many providers use 95th percentile
of traffic volume to engineer their networks. Thus, unless there is a sudden surge in traffic due
to unanticipated demand, most well-engineered networks should be able to avoid network
level congestions. This is important to keep in mind.

Further Lookup

The literature on packet queueing and scheduling and active queue management is vast. We
highlight only a few examples here. For a general processing sharing principle, refer to [543],
[544]. For various queueing disciplines, see [72], [378], [379], [640], [670].

For early works on congestion control in packet networks, see [52], [575], [508]. For ac-
tive queue management, through mechanisms such as RED and its many variations, see [88],
[222], [227], [295], [343], [495], [410], [762]. It is worth noting that if a buffer is small, RED
might not lead to improvement in network performance [451]; thus, it is important to size the
buffer properly for traffic engineering (refer to Section 7.2.3). For understanding the interac-
tion of congestion control and routing, refer to [64], [288], [581], [598], [635].

For the recently proposed datagram congestion control protocol (DCCP) and its TCP-
friendly rate control and TCP-like congestion control mechanisms, see [229], [230], [371].

32 22.9 Exercises

Finally, readers might be interested in comparing congestion control mechanisms used
for voice call traffic in the PSTN, discussed in Section 11.6, with the ones discussed in this
chapter for the Internet.

Exercises

22.1 Explain different packet scheduling disciplines, their strengths and limitations, and
deficit round-robin scheme.

22.2 Consider Example 22.2; work through the numbers if the quantum credit for each queue
is reduced to 300.

22.3 Explain why it is important to consider TCP congestion control mechanisms in a router
design.

22.4 Explain strengths and limitations of the random early detection mechanism and its vari-
ations.

	Packet Queueing and Scheduling
	Packet Scheduling
	TCP Congestion Control
	Implicit Feedback Schemes
	Random Early Detection (RED)
	Variations of RED
	Explicit Feedback Schemes
	New Class of Algorithms
	Analyzing System Behavior
	Summary
	Further Lookup
	Exercises

