
Part VI:
Advanced Topics
(Bonus Material
on CD-ROM)
This part includes additional material that are related to Part IV and Part V; it consists of two
sub-parts.

In the first sub-part, three chapters (Chapter 21, Chapter 22, and Chapter 23) cover func-
tions and components of a router in further detail as a continuation of Part IV. First, different
approaches to architect the switch fabric of a router are presented in Chapter 21. Second,
packet queueing and scheduling approaches are discussed along with their strengths and
limitations in Chapter 22. Third, traffic conditioning, an important function of a router, espe-
cially to meet service level agreements, is presented in Chapter 23.

In the second sub-part, we include two chapters (Chapter 24 and Chapter 25). Transport
network routing is presented first in its general framework, followed by a formal treatment of
the transport network route engineering problem over multiple time periods, in Chapter 24.
The final chapter (Chapter 25) covers two different dimensions: optical network routing and
multi-layer network routing. In optical network routing, we discuss both SONET and WDM
in a transport network framework; more importantly, we also point out the circumstances un-
der which a WDM on-demand network differs from a basic transport network paradigm. Fur-
thermore, we discuss routing in multiple layers from the service network to multiple views
of the transport networks; this is done by appropriately considering the unit of information
on which routing decision is made and the time granularity of making such a decision. We
conclude by presenting overlay network routing and its relation to multilayer routing.
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21
Switching Packets
One never notices what has been done; one can only see what remains to be
done.

Marie Curie

Reading Guideline

The switching fabric of a router must be extremely efficient so that packets are
processed quickly. In this chapter, we present a variety of switching architectures
used in routers. It is important to note that many concepts originally came from
switching architectures for circuit switching; this connection is highlighted. Under-
standing switching architectures is helpful in gaining an appreciation of modern-
day routers. Furthermore, due to commonalities, the material presented here is use-
ful for understanding similar switching architectures employed in networking tech-
nologies such as optical networking.
D. Medhi and K. Ramasamy, Network Routing: Algorithms, Protocols, and Architectures.
c© 2007 by Elsevier, Inc. All rights reserved.



Cop
yr

igh
t

C H A P T E R 2 1 Switching Packets 3

A switch fabric is a core component of any router that provides a physical path between
the ingress line card and the egress line card. In routers, the line cards terminate the network
interfaces that carry packet traffic from or to another router or host. As the packets arrive from
these interfaces, the line cards perform route lookups to determine their destination. The line
card then forwards each packet to the switch fabric, which is responsible for transporting the
packet from the ingress line card to the egress line card. At the egress line card, the packet is
queued and scheduled for transmission on the output network interface.

In this chapter, we study in detail the architecture of different types of switches, but those
used in routers belong to a broader class of packet switches. These switches transport packets
that contain data as well as the information needed to determine the destination. While the
literature on switch fabrics is vast, we restrict most of our discussion to those that are imple-
mented today in commercial routers. In addition, we also discuss some of the recent advances
in switch architectures that are capable of carrying terabits of traffic per second. Sometimes,
in the literature, a switch fabric is referred to as a backplane.

21.1 Generic Switch Architecture

A generic switch fabric in a router has five main components as shown in Figure 21.1.

• The fabric input interface connects the ingress network processing modules of a line card
to the switch fabric. This component performs various functions: it coordinates with the
scheduler regarding the presence of packets, segments the variable-length IP packets into
fixed-sized cells if needed, and enables their transmission when indicated by the sched-
uler.

F I G U R E 21.1 A generic switch.
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• The fabric input buffers provide temporary storage for the packets in case the switch fabric
is not able to schedule packets immediately upon their arrival. In addition, the presence
of these buffers reduces packet loss during bursty conditions.

• The switch fabric transfers data from one line card to another line card. It dynamically
connects multiple ingress line cards to egress line cards to ensure paths are available in
the fabric to transfer data simultaneously. The scheduler is the heart of the switch fabric,
which identifies the paths through the fabric from ingress line cards to egress line cards.

• The fabric output interface receives traffic from the switch fabric and forwards it to the egress
network processing modules of the line card. It coordinates with the fabric scheduler to
receive packets from the switch fabric. If the packet is originally segmented, it assembles
the cells into whole packets. Furthermore, it coordinates with the output scheduler to
transmit the packets depending on priority and quality-of-service (QoS) requirements.

• The fabric output buffers store the packets as they are awaiting their turn to be transmitted.

In most routers, the fabric input and output interfaces are implemented in a single chip
that resides in the line card. The line cards also contain the fabric input and output buffers.
However, the switch fabric along with the scheduler is implemented in a separate card
called the switch fabric card. The switch fabrics can be dichotomized into shared backplanes
and switched backplanes.

21.2 Requirements and Metrics
Before delving into individual switch architectures, we need to understand the requirements
of a switch fabric when used inside a router. The primary requirement is to maximize the
amount of data transferred across the fabric. This means that the fabric should transfer traffic
from multiple line cards simultaneously.

A network switch fabric should provide fair bandwidth allocation for all the line cards.
This implies that even during a momentary overload, excess traffic destined for line card
A should not steal bandwidth from traffic destined for line card B even though the traffic
destined for line cards A and B shares the resources of the fabric.

Another desirable requirement is that the switch fabric should not reorder packets. Since
higher-layer protocols (like TCP) implement buffering for sequencing out-of-order packets,
the natural question is why the switch fabric should not reorder packets. With current routers
carrying voice and multimedia traffic, the reordering of packets increases the end-to-end de-
lay, affecting user experience. Such delay-sensitive traffic imposes another requirement: the
traffic needs to be prioritized and higher-priority traffic must be transferred across the fabric
before the lower-priority traffic.

Since the switch fabric is a central critical component of a router, its failure implies that
the router will be unable to forward any packets. Hence, an important requirement is that the
switch fabric must provide sufficient redundancy for a router to continue to operate when a
fabric failure occurs.

The performance of a switch fabric depends on several factors, such as its internal ar-
chitecture and the nature of the traffic passing through it. The three primary performance
metrics of interest are throughput, latency, and path diversity [163].
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• Throughput: The throughput of a fabric determines how much data it can transfer in a unit
of time. It is measured in bits per second. For instance, consider a router with 16 line cards
with each line card capable of sending 40 Gbps of traffic into the fabric. If all the line cards
wish to transfer packets simultaneously, then the aggregate throughput of the fabric needs
to be 640 Gbps (= 16 × 40 Gbps). Since Internet traffic is growing at a high rate, routers
need to forward more packets and thus places more demands on the switch throughput.

• Latency: Another metric is the latency experienced by a packet as it travels to the switch
fabric. This is significant as IP packets carry multimedia traffic that requires delay guar-
antees. Formally, the latency in a switch fabric is defined as the time it takes to transfer a
packet through the switch fabric from an input port to an output port. To a certain degree,
the latency experienced by a packet in a router depends on the latency introduced by the
switch fabric.

• Path Diversity: This refers to the number of available paths within the switch fabric for
every pair of input and output ports. When more than one path is available, the switch
fabric is said to be more robust. The traffic can be load-balanced across these paths, which
allows the switch to tolerate any component failures.

In the following sections, we study shared and switched backplanes and their represen-
tative architectures in detail.

21.3 Shared Backplanes
This type of backplane uses a shared medium for transferring packets from one line card
to another. The switches using a shared bus or ring topology fall under this category. While
this type of backplane is more economical, it is often limited in throughput. Hence, such
backplanes are used in low-bandwidth enterprise routers. In the next section, we will discuss
the simplest shared backplane, the shared buses, in detail.

21.3.1 Shared Bus

A shared bus is the simplest and most commonly used form of switching. A bus connects a
number of ports with a shared channel that serves as a broadcast medium. Within a router,
each port houses a line card. A typical implementation of a bus uses a set of signal lines or a
single line connected to all the ports. When a packet is transmitted over the bus, every port
receives it. Depending on whether the packet is destined for it, a port chooses to accept the
packet or ignore it. A bus protocol determines which port has permission to transmit at any
given time. A shared bus with line cards is shown in Figure 21.2.

A shared bus has two key properties. First, it implements broadcast and multicast na-
tively and they are no more expensive than a packet transmitted point-to-point. This is be-
cause all the packets transmitted over the bus are broadcast to all the ports. Second, at any
given instant, only one port can transmit a packet over the bus and, hence, there is no need
for any packet resequencing on the destination line cards.

Now let us turn our attention to how much bus bandwidth will be required. If each port is
capable of a data rate of R bps, a bus supporting N line cards needs to operate at a bandwidth
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F I G U R E 21.2 A shared bus with 6 line cards connected to ports.

of RN bps. If the bus uses a clock frequency of r Hz, the bus width w must be at least Rn/r
bits. Let us go through an example that calculates the bus bandwidth and the bus width.

Example 21.1 Shared bus bandwith and width for a router.
Consider a router with 16 line cards using a shared bus with each line card operating

at 100 Mbps. In this scenario, the bus must provide a bandwidth of 1.6 Gbps (= 100 × 16).
Assuming the bus uses an internal clock rate of 40 MHz, the bus width should be 40 bits
(1.6 Gbps/40 MHz). �

With the availability of fast CPUs, in router architectures using a shared bus (discussed in
Section 14.6.1), the primary bottleneck is the bus itself. When one line card is sending a packet
to another line card, other line cards have to refrain from communicating even though they
might have packets to transmit. Clearly, this is not desirable as the need for routing band-
width is growing exponentially and, hence, high-capacity routers are needed. For instance,
consider a high-capacity router that has eight line cards with each operating at 40 Gbps. The
required bus bandwidth is, at worst, 320 Gbps (= 8 × 40 Gbps) when all the line cards want
to transfer their packets simultaneously. It is not practically feasible to build a shared bus
operating at 320 Gbps. At present, a fast off-the-shelf bus commercially available is the PCI
Express, which offers speeds of up to 80 Gbps [96], [671].

Another disadvantage with the use of a shared bus is that as the number of ports con-
nected to a bus increases, the electrical loading on the signal lines grows [459], [705]. This
reduces the maximum clock frequency that can be achieved (that is, r reduces to cr, 0 < c < 1).
Hence, the bus width w should grow more than the number of ports N to maintain sufficient
bus bandwidth. For instance, if c is 0.8 due to electrical loading, the bus width for Exam-
ple 21.1 should be 50 bits (= 1.6 Gbps/(0.8 × 40 MHz)). While there are techniques to reduce
or eliminate the impact of this electrical loading, they are more complex to implement [705].

Because of these limitations, it is necessary to develop backplanes that provide high per-
formance at a reasonable cost. For smaller routers with a few Gbps of throughput, the shared
bus is attractive from both a cost and performance perspective.
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F I G U R E 21.3 A switched backplane showing the transfer of multiple packets
simultaneously.

21.4 Switched Backplanes
A switched backplane allows packets to be transferred simultaneously between different line
cards. Such a parallel transfer of packets increases the aggregate throughput of a backplane.
Like a shared backplane, a switched backplane also consists of N ports with each port housing
a line card. Since each line card can transmit as well as receive packets simultaneously from
the backplane, conceptually it has an input port and an output port. Hence, the switched
backplanes are depicted using N input and N output ports.

A typical switched backplane with four ports is shown in Figure 21.3, which shows that
multiple packet transfers are occurring simultaneously from input to output ports. For in-
stance, input port A is transferring packet 3 to output port 3 while port B is transmitting
packet 1 to output port 1, and so on. Meanwhile, other packets are waiting at the input ports
for their turn.

An important component of any switched backplane is the scheduler. The scheduler de-
termines which input ports will transmit their packets to which output ports. Since IP packets
are of variable length, the design of the scheduler becomes complex and leads to starvation
and reduction in throughput (see Exercise). Hence, variable-length packets are segmented
into fixed-sized cells and these cells are scheduled so that their transfers can occur within a
fixed time called a timeslot. At the end of each timeslot, the scheduling algorithm examines
the cells at the input ports waiting to be transferred across the backplane and decides which
inputs will be connected to which outputs (for the next timeslot). Then the cells are phys-
ically transferred during the next timeslot. Such segmentation of packets to cells efficiently
uses backplane and simplifies the hardware design. Unless otherwise specified, for the rest
of the chapter we will assume that an IP packet is segmented into cells before traversing the
switch fabric. In the next few sections, we will study switched backplanes in detail starting
with shared memory, and followed by crossbar, Clos networks, Benes̆ networks, and torus
networks.

21.5 Shared Memory
Perhaps the simplest implementation of a switched backplane is based on a centralized mem-
ory shared between input and output ports. When packets arrive at the input ports, they are
written to this centralized shared memory. When the packets are scheduled for transmission,
they are read from shared memory and transmitted on the output ports. Figure 21.4 shows a
shared memory switch. As shown, the memory is partitioned into multiple queues, one for
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F I G U R E 21.4 A shared memory switch where the memory is partitioned into multiple
queues.

each output port, and an incoming packet is appended to the appropriate queue (the queue
associated with the output port on which the packet needs to be transmitted). The incoming
bits of the packet are accumulated in an input shift register. Once enough bits equal to the
width of the memory word are accumulated in the shift register, it is stored in memory. Dur-
ing output, the packet is read out from the output shift register and transmitted bit by bit in
the outgoing link.

A related issue with each output port being associated with a queue is how the memory
should be partitioned across these queues. One possibility is to partition the memory into
fixed-sized regions, one per queue. While this is simple, the problem with this approach is
that when a few output ports are oversubscribed, their queues can fill up and eventually start
dropping packets. An alternative approach is to allow the size of each partition to be flexible.
In other words, there is no boundary on the size of each queue as long as the sum of all queue
sizes does not exceed total memory. Such flexible-sized partitions require more sophisticated
hardware to manage; however, they improve the packet loss rate [699]. The rationale is that
a queue does not suffer from overflow until no free memory remains; since outputs idle at a
given time they can “lend” some memory to other outputs that happen to be heavily used at
the moment.

Despite its simplicity, it is difficult to scale the capacity of shared memory switches to
the aggregate capacity needed today. Let us examine why. First, a significant issue is the
memory bandwidth. When the line rate R per port increases, the memory bandwidth should
be sufficiently large to accommodate all input and output traffic simultaneously. A switch
with N ports that buffers packets in memory requires a memory bandwidth of 2NR as N input
ports and N output ports can write and read simultaneously. Hence, the memory bandwidth
needs to scale linearly with the line rate.

Second, the access times of memory available are much higher than required. It is typical
in most implementations to segment the packets into fixed-sized cells as memory can be
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utilized more efficiently when all buffers are the same size [332]. If the cell size is C, the
shared memory will be accessed every C/(2NR) sec. For a switch with N = 32 ports, a cell size
of C = 40 bytes, and a data rate of R = 40 Gbps, the access time required will be 0.125 nanosec.
This is an order of magnitude smaller than the fast-memory SRAM, the access time of which
is 5–10 nanosec at present.

Third, as the line rate R increases, a larger amount of memory will be required. As indi-
cated in Chapters 7 and 22, the routers need buffers to hold packets during times of conges-
tion to reduce packet loss. The standard rule of thumb is to use buffers of size RTT × R for
each link, where RTT is the average roundtrip time of a flow passing through the link. For ex-
ample, a port capable of 10 Gbps needs approximately 2.5 Gbits (= 250 millisec × 10 Gbps). If
there are 32 ports in a router, the shared memory required is 32 × 2.5 Gbits = 80 Gbits, which
would be impractical.

Finally, the time required to determine where to enqueue the incoming packets and issue
the appropriate control signals for that purpose should be sufficiently small to keep up with
the flow of incoming packets. In other words, the central controller must be capable of issuing
control signals for simultaneous processing of N incoming packets and N outgoing packets.

Despite these disadvantages, some of the early implementations of switches used shared
memory. These include the datapath switch [346], the PRELUDE switch from CNET [154],
[175], and the SBMS switching element from Hitachi [199]. Commercially, some of the routers
such as the Juniper M40 [629] use shared memory switches. Before closing the discussion on
shared memory, let us examine a few techniques for increasing memory bandwidth.

21.5.1 Scaling Memory Bandwidth

With increasing link data rate, the memory bandwidth of a shared memory switch, as shown
in the previous section, needs to proportionally increase. However, currently available mem-
ory technologies like SRAM and DRAM are not very well suited for use in large shared mem-
ory switches. While SRAM has access times that can keep up with the line rates, it does not
have large enough storage because of its low density. On the other hand, DRAM is too slow,
with access times on the order of 50 nanosec (which has increased very little in recent years).

In such scenarios, the standard tricks to increase memory bandwidth [293] are to use
a wider memory word or use multiple banks and interleave the access. For a line rate of
40 Gbps, a minimum-sized packet of 40 bytes will arrive every 8 nanosec, which will require
two accesses to memory; one to store the packet in memory when it arrives at the input
port and the other to read from memory for transmission through the output port. If we
were to use a DRAM with an access time of 50 nanosec, the width of the memory should
be approximately 500 bytes (= 2 × 50 nanosec/8 nanosec × 40 bytes), in which 2 is for read
and write. This means more than one minimum-sized packet needs to be stored in a single
memory word. However, it is not possible to guarantee that these packets will be read out at
the same time for output. This is because the packets could belong to different flows and QoS
requirements might require that these packets depart at different times.

Alternatively, the memory can be organized as multiple DRAM banks so that multiple
words can be read or written at a time rather than a single word. This type of organization
is sometimes referred to as interleaved memory. In this case, for a line rate of 40 Gbps, we
would need 13 (= �50 nanosec/8 nanosec × 2�) DRAM banks with each bank required to be
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40 bytes wide. When a stream of packets arrives, the first packet is sent to bank 1, the second
packet to bank 2, and so on. The idea is that by the time packet 14 arrives, bank 1 would
have completed writing packet 1. Assuming minimum-sized packets, if packet 1 arrives at
time t = 0, then packet 14 will arrive at t = 104 nanosec (t = 13 packets × 40 bytes/packet ×
8 bits/byte/40 Gbps). By this time, bank 1 would have finished writing packet 1 and would
be ready to write packet 14. Actually, bank 1 would be ready at t = 50 nanosec. If so, then
why a gap of 54 nanosec? It is because another 50 nanosec is needed for an opportunity to
read a packet from bank 1 for transmission to an output port.

However, the problem with this approach is that it is not clear in what order the packets
must be read. To satisfy QoS requirements, the packets might have to be read in a different or-
der. This could lead to something called the “hot bank” syndrome where the packet accesses
are directed to a few DRAM banks, leading to memory contention and packet loss. Another
variation of this approach is to send the incoming packets to a randomly selected DRAM
bank. The problem with this approach is that if the packets are segmented into cells, the cells
of a packet will be distributed randomly on the banks, making reassembly complicated.

21.6 Crossbar
The simplest switched backplane is a crossbar. An N × N crossbar switch has N input buses
and N output buses in a fully connected topology, as shown in Figure 21.5; that is, there are N2

crosspoints, which are either on or off. Each crosspoint (i, j), 0 ≤ i < N, 0 ≤ j < N is controlled
by a transistor that can be either turned on or off. When a line card i wishes to transfer a cell
to line card j, the crosspoint (i, j) is turned on and the actual cell is transmitted. For instance, if
the line card at port 2 has a cell destined for the line card at port 5, the transistor at crosspoint
(2,5) is turned on to enable the data transfer, which is also shown in Figure 21.5. A crossbar is
internally nonblocking as it allows all inputs and outputs to transfer packets simultaneously.

A crossbar switch is controlled by a centralized scheduler. The scheduler provides a
schedule that indicates the inputs that need to be connected to the outputs at a given instant.
If the cells arrive at fixed intervals, then the schedule can be computed a priori. Otherwise,
the switch must compute the schedule on the fly. In such cases, the schedule is generated by

F I G U R E 21.5 A crossbar switch showing data flow from input port 2 to output port 5.
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considering all the cells waiting to be transferred across the switch fabric. Then a configura-
tion of crossbar is selected, ensuring that at a given instant each input is connected to at most
one output and each output is connected to at most one input. Since the scheduler needs to
turn the transistors on or off at the crosspoints, a control line is necessary that connects each
of them to the scheduler.

The high performance of the crossbar switch is attributed to two factors. The links con-
necting the line cards to the switch fabric are simple point-to-point links and hence they can
operate at high speeds. With the recent advances in semiconductor technology these links can
operate as fast as 10 Gbps. The second factor is that the switch supports simultaneous connec-
tions of multiple inputs with outputs. The crossbar switch can close several crosspoints at the
same time, thereby allowing the transfer of packets between multiple ports simultaneously.
This greatly increases the aggregate bandwidth of the switch. However, the performance can
be limited by several factors. First, some of the line cards might not have any data to send.
Second, two or more line cards might want to send data destined for the same output port.
In this case, only one of them can win and this, as a consequence, limits the data throughput
since the other line card cannot send its data.

Before using a crossbar as a switch fabric, it is important to consider the advantages and
potential drawbacks. It uses a simple two-state crosspoint (on or off), which is easy to imple-
ment. The modularity of the switch design allows large switches to be built by simply adding
more crosspoints. Another significant advantage of a crossbar is the ability to natively sup-
port multicast. If an input port wishes to transmit its cell to multiple output ports, all the
crosspoints corresponding to the input and output ports need to be turned on simultane-
ously. This allows each output port to receive a copy of the cell. For instance, assume that
input port 5 in Figure 21.5 needs to multicast to output ports 2, 3, and 4. This is easily pos-
sible by turning on the crosspoints at (5,2), (5,3), and (5,4). Finally, the crossbar provides a
low-latency path for connecting input to output compared to other switches since it has the
lowest number of connecting points (just one).

The major disadvantage is that the cost of a N × N crossbar, measured in terms of the
number of crosspoints, increases quadratically as N increases. For doubling the number of
inputs and outputs of a switch, the number of crosspoints need to be increased to four times
the original. For instance, a 50 × 50 switch requires 2,500 crosspoints, whereas a 100 × 100
switch requires 10,000 crosspoints.

A crosspoint can be implemented using a transistor and hence it takes very minimal
space in a chip. With the current chip fabrication technologies, millions of transistors can be
easily accommodated in a chip. Consequently, the cost of crosspoints and the area it consumes
might not be relevant for configurations N < 1000. For higher configurations of N > 1000, still
the dominant cost is the number of crosspoints.

The number of pins that can be packaged on a chip affects the cost of a crossbar; how-
ever, a chip may include other components. Thus, there is a fixed cost associated with each
chip. Because of pin issues and the fixed cost associated with pins, most implementations of
crossbar switches are restricted to between 8 and 32 ports. The second potential drawback
is the difficulty in providing guaranteed QoS. This is because the cells arriving at the switch
must compete for access to the fabric with the cells already waiting at the input port and also
with cells in other input ports bound for the same output port. The third disadvantage is that
there is only a single path between an input and output—thus, any single crosspoint failure
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would make this nonfunctional. Finally, even though multicast can be supported easily by
connecting the input bus to all the output buses, scheduling becomes tricky and complex.

The interesting algorithmic aspect of crossbar switches is the scheduling algorithm. The
objective of the scheduling algorithm is to compute pairs of input and output ports that max-
imize the number of cells transferred in a timeslot, by taking into consideration the cells
that are waiting to be transferred. In the next few sections, we will focus on such crossbar
scheduling algorithms. Our discussion begins with a simple and elegant scheduling scheme
implemented in DEC’s Gigaswitch [653], called “take-a-ticket.”

21.6.1 Take-a-Ticket Scheduler

The basic idea behind the take-a-ticket scheduler is based on a ticketing scheme used in deli
sandwich shops. In these shops, you first go to the counter, order your sandwich, and af-
ter payment, the cashier gives you a number that identifies your position in the queue. The
cashier calls out the current number and you keep monitoring until your number is called.
When your number is called, you can pick up your sandwich.

Similarly, each output port Q in the switch maintains a distributed queue for all the input
ports P waiting to send to Q. The queue is actually not maintained at the output port Q.
Instead, it is stored at the input ports using a ticket number mechanism. An input port P that
has a cell to send to output port Q obtains a ticket from that port indicating its position in the
queue. To obtain a ticket, port P sends a request over a separate control bus to Q. In response,
the output port Q provides a queue number to P, again over the same control bus. The queue
number indicates the position of P in the output queue of Q.

Port P keeps monitoring the control bus until its queue number is called out. Meanwhile,
after port Q finishes serving the current cell, Q sends the next queue number it is willing to
serve on the control bus. When P notices that its number is being served, it places its cell on
the data bus to Q. At this time, the crosspoint connecting port P to port Q is turned on by Q
to facilitate the cell transmission. As you can see, at any given instant, each input port works
with only one cell and starts with the cell at the head of the queue.

Now we are ready to describe the algorithm, which consists of three distinct phases:

• Request Phase: This phase initiates the request for obtaining a ticket number. Each input
port sends a request to the output port for which the cell at the head of the queue is
destined via the control bus.

• Grant Phase: This phase assigns and communicates the ticket number. The output port
on receiving the requests from the input ports assigns a ticket number based on order of
arrival and sends the number to the input ports again via the control bus.

• Connect and Transfer Phase: In this phase, the output port indicates its willingness to
serve a request by placing the ticket number on the control bus. When the input port
recognizes it is being served, it initiates the actual flow of data and the cell is transferred
to the output port. The output ports ensure the appropriate crosspoints are turned on for
the transfer to take place.
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The algorithm operates iteratively and in each iteration many cells (from different input ports
to different output ports) are transferred simultaneously. Let us walk through an example of
scheduling cells for a better understanding of the algorithm.

Example 21.2 Scheduling and transfer of cells using take-a-ticket scheduler.
Consider a switch with four input ports denoted by A, B, C, and D and output ports

denoted by 1, 2, 3, and 4 as shown in Figure 21.6. It shows the input port A has to send cells
to output ports 1, 2, and 3, while port B has three cells destined for output ports 1, 3, and 4.
Port C has three cells similar to port B. Finally, port D has three cells bound for output ports
2, 3, and 4. In Figure 21.6 notice that the cells are numbered based on the output port to which
they are bound. The algorithm operates iteratively and each iteration is referred to as a round.

In round 1, during the request phase, ports A, B, and C send their requests to output
port 1 as each has a cell at the head of the queue bound for that port. At the same time, port D
sends a request to port 2. Assuming the request from A arrives at port 1 first, followed by B
and then C, the grant phase assigns the tickets T11, T12, and T13 to A, B, and C, respectively.
Similarly, port 2 responds with the ticket T21 to port D, which concludes the request phase.
In Figure 21.6, the requests and the ticket grants are represented using black lines with the
direction arrows connecting the appropriate input and output ports. Now, output ports 1
and 2 broadcast the current ticket numbers being served, T11 and T21, on a separate control
bus. As soon as the ports A and D see that their requests are being served, they transfer their

F I G U R E 21.6 Three rounds of a take-a-ticket scheduler in operation.
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respective cells 1 and 2 to the corresponding output ports. Before the transfer, the crosspoints
at (A,1) and (D,2) are turned on by the centralized scheduler. In Figure 21.6, the solid black
lines without arrows illustrate the data transfer between the input and output ports. This
concludes round 1.

In the next round (round 2), ports A and D send their requests to ports 2 and 4, respec-
tively. Port A is granted the ticket number T22, while port D gets T41 as it is the first request
for port 4. In parallel, the outport ports 1, 2, and 4 indicate their serving ticket numbers T12,
T22, and T41, respectively. Note that ticket T12 was obtained in the previous round, but it is
being served in the current round. During the connect phase, port A transfers its cell to port
2, port B to port 1, and port D to port 4.

Now for round 3, ports A, B, and D send their requests to port 3. If the requests from A, B,
and D arrive in order, ticket numbers T31, T32, and T33 are granted, respectively. The current
serving ticket numbers T13 for port 1 and T31 for port 3 are broadcast in a separate control
bus. Once the crosspoints (A,3) and (C,1) are enabled, the cells are transferred from ports A
and C to the outport ports 3 and 1, respectively. Finally, port C gets a chance to transfer its
first cell to port 1. The algorithm continues in this fashion for six rounds until the remaining
cells are transmitted. �

The major advantage of this scheme is the ability to handle variable-length packets due
to the nonexistence of any dependencies in the algorithm across ports. Each output port can
asynchronously grant a ticket number whenever an input port requests it and similarly, can
asynchronously broadcast the current serving ticket number once the current transfer is com-
pleted. Hence, it obviates the need to break up the original packets into cells of fixed size
before transmitting and the need for reassembling at the output line card.

In addition to variable-length packets, the scheme has the advantage of using a small
amount of memory to maintain the control state; two log2 N bit counters at each output port,
one for the current serving ticket number and the other for tracking the highest ticker num-
ber granted. Since the control state required is very small, DEC’s implementation of the Gi-
gaswitch [653] is scaled to 36 ports.

A major drawback of this scheme is head-of-line blocking, which limits the amount of par-
allelism, and as a result, reduces the throughput of the switch. Furthermore, since the sched-
ulers at the output ports operate independently, it is hard to coordinate a subset of them for a
multicast. If output ports must wait until all the requested ports become free, several oppor-
tunities for transferring packets from other input ports are lost and, hence, the throughput
might be expected to be lower. Therefore, multicasts were handled separately in software
running on a central processor.

21.6.2 Factors That Limit Performance
As can be seen from Example 21.2, after three rounds only eight cells have been transmitted.
In each round, each input port can potentially tranfer a cell to an output port. With three
rounds, there have been a total of 12 opportunities (4 input ports × 3 rounds) to transmit, but
only 8 of them have been used. Ports B and C still have two cells left to transmit at the end of
three rounds. This shows that the available parallelism has not been fully exploited.

To visualize this better, we can depict the order of the transmission of cells at the input
ports using a timeslot diagram as shown in Figure 21.7. Each input port in Figure 21.7 is
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F I G U R E 21.7 Transfer of cells from input to output ports using take-a-ticket scheduling.

associated with six timeslots, representing the six rounds needed to transmit all the packets.
Each round is numbered using the timeslot to which it belongs at the top. Each timeslot
either contains an output port indicating the transfer of a cell to that port, or it is empty
indicating that it is not used. Note that in our example, the cells are named based on the
output port to which they are destined. From Figure 21.7 is it possible to infer that all the 12
input cells are transmitted out of 24 transmission opportunities, which amounts to just 50%
utilization. We shall show in the later sections how other scheduling algorithms better exploit
parallelism.

To determine the reasons for low utilization, we need to examine three types of blocking.
The first type of blocking is called head-of-line (HOL) blocking and the second and third types
are called input and output blocking, respectively. We shall see how HOL blocking reduces the
throughput, while input and output blocking increase the delay of the cells passing through
the fabric. In the next section, we discuss HOL blocking, the conditions under which it occurs,
and how it impacts performance.

21.7 Head-of-Line Blocking
In a crossbar switch, all the cells waiting at an input port are stored in a single FIFO queue.
Once the cell reaches the head of its queue, the scheduling algorithm considers it for trans-
mission. However, this cell must compete with other cells that are at the head of the queues of
other input ports but destined for the same output port. Such a tie is broken by the scheduler,
which decides which cell will be transmitted next. Eventually, each cell will be selected and
delivered to its output port. Using an FIFO queue at the input presents a problem since cells
can be held by other cells ahead of them that are destined for a different output. This type
of blocking is called HOL blocking. Since the scheduler when generating a schedule consid-
ers only the HOL cell, other cells behind it destined for different output ports are essentially
blocked.

A good way to understand HOL blocking is to think of yourself in a car traveling on a
single-lane road. You arrive at an intersection where you need to turn right. However, there
is a car ahead of you that is not turning and is waiting for the traffic signal to turn green. Even
though you are allowed to turn right at the light, you are blocked since you cannot pass on a
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single lane. Now let us consider an analogous example where in some time slots a few input
ports are unable to send to their cells.

Example 21.3 Cells blocked by the cell at the head of the queue.
Going back to Example 21.2, in round 1 there were three cells destined for output port

1 from ports A, B, and C. The scheduler picks the cell from A to transmit. Because of this
decision, the queues at ports B and C are essentially stuck waiting for A to complete. Hence,
the cells 3 and 4 waiting behind cell 1 are blocked in ports B and C. As a result, ports B and
C lose their opportunity to transmit. �

As mentioned earlier, such a loss of opportunities occurs because the scheduling algorithm
considers only the cells at the head of the queue. Sophisticated scheduling algorithms, as we
shall see in later sections, take into account the cells behind the head of the queue and allow
them to be transmitted. For example, while port A is transmitting its cell to port 1, port B and
port C can send their waiting cells 3 and 4 behind the head of the queue to port 3 and port 4,
respectively.

The lost opportunities to transmit because of HOL blocking lead to lower throughput of a
switch. Let us analytically derive the reduction in throughput by assuming an N × N switch.
Furthermore, assume that all inputs always have a cell to transmit. Now consider the cells at
the head of their queue, which in this case is only N. If the traffic is uniform, each cell could
be destined to each output with an equal probability of 1/N. If cells from different inputs
are bound to the same output, then only one of them can get through and the rest will be
blocked.

Now let us consider the probability that an output O is idle. This is possible only when
none of the inputs has a cell to transmit to O. The probability that an input does not choose
output O is 1 − 1/N. Since an input not sending to output O is independent of the other, the
probability that all N inputs are not sending to output O is (1 − 1/N)N . As N increases, this
expression converges to 1/e, which is approximately 0.37. Hence the probability of the output
being busy is 1 − 0.37 = 0.63. Ideally, the throughput of the switch should be NR, where R is
the data rate at which the outputs operate. Since each output can be busy at most 63% of the
time, the maximum expected throughput can be as much as 0.63NR.

In the analysis, we assumed that the cells considered for scheduling in the current iter-
ation are independent of the previous iteration. In reality, this is not the case. The cells that
were not transmitted in the previous iteration have to be reconsidered in the current itera-
tion. Hence the maximum throughput is even lower and is closer to 58% [352]. In the next
few sections, we will take a detailed look at some of the solutions proposed to avoid or even
eliminate HOL blocking and discuss their advantages and disadvantages.

21.8 Output Queueing
The initial set of solutions proposed for HOL blocking was based on the use of output queue-
ing instead of input queueing. If a cell C can be instantly transmitted to an output port with-
out any queueing at the input, then it is impossible for that cell to block other cells behind
it, thus eliminating HOL blocking. As a result, all the cells arriving at the input ports are im-
mediately delivered upon their arrival to the output ports. In the worst case, cells at all the
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F I G U R E 21.8 An output-queued switch with queues operating N times faster than input
ports.

input ports may be destined for the same output port. Since the switch does not have any
input buffers and if the packets are not to be dropped, the switch must deliver N cells to the
single output port and the output queue must store all of them in the time it takes for one
cell to arrive at an input. Hence, the switch fabric and the output queue need to run N times
faster than the input ports. This can be expensive or difficult to implement. An output-queued
switch is shown in Figure 21.8.

One way to reduce the cost of implementing output queueing is to use the knockout prin-
ciple [755]. This principle states that if there are N inputs in the switch, it is very unlikely
that all N cells received in any cell time are destined for the same output port. If the expected
number of such cells is S, where S < N, then the fabric and output queue can be optimized to
be run only S times faster instead of N. This is less expensive and can be implemented using
S parallel buses.

When the expected case is violated by the arrival of a number of cells greater than S in a
cell time, the remaining cells must be dropped. In such cases, the packet losses will be fairly
distributed among the input ports. For a variety of input distributions, it has been shown that
S = 8 reduces the packet loss probability to one in a million.

There are two main difficulties in designing a switch based on the knockout principle.
The first is how to implement a mechanism to choose S cells when the number of expected
cells exceeds S. A naive approach is to pair the input cells and choose the winner of the pair.
When S = 4 and N = 8, we require four 2 × 2 concentrators to pair eight cells. The concen-
trators choose one cell randomly out of their two input cells and the winning cell is passed
to the output while the loser cells are dropped. While this approach is simple and easy to
implement, it is not fair in the sense that the cell drops are not evenly distributed among all
the inputs ports. To obtain a better insight, consider the following. Assume two heavy traf-
fic sources M1 and M2 are paired in a concentrator while another heavy traffic source M3

is paired with an occasional traffic-generating source M4. In this case, M3 gets double the
amount of bandwidth compared to M1 and M2, and hence the implementation is not fair.
Now let us develop the concepts for a fair implementation by considering simpler cases be-
fore describing the final solution.
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F I G U R E 21.9 Choosing a winning cell when (a) N = 2 and (b) N = 4.

• Case S = 1 and N = 2: For such cases, a simple 2×2 concentrator can be used to choose one
winner randomly from the two input cells. However, the concentrator outputs both the
cells, one of them being the winner and the other being the loser as shown in Figure 21.9(a).
The loser is interesting in the general case.

• Case S = 1 and N > 2: In this case, one winner needs to be chosen among the cells N > 2.
This is analogous to choosing the winner in an elimination tournament. As in the tour-
nament, each cell is paired with another cell for the first stage using N/2 concentrators
to identify N/2 winners. The rest of the N/2 cells are “knocked out,” i.e., dropped. In the
second stage, these N/2 winners are paired using N/4 concentrators and a new set of N/4
winners is found and so on until the root concentrator chooses the final winner. These
concentrators form a tree referred to as the knockout tree. The knockout tree for N = 8 is
illustrated in Figure 21.9(b), where concentrators are shown as nodes.

Now let us consider the general case where the switch needs to choose S out of N possible
cells. A straightforward approach is to use S knockout trees as shown in Figure 21.10, one for
each winner. Unlike other approaches in which the loser cells are dropped, they are allowed
to participate in the subsequent knockout trees to provide fairness. This is why the concen-
trators provide two outputs—one for the winner and the other for the loser. As can be seen
in Figure 21.10, the first knockout tree takes as input all the N cells and produces the first
winner. All the N − 1 cells that lose enter the competition again at various stages in the sec-
ond knockout tree, and so on. Note from the figure that winning cells will appear at different
times. If all the winning cells need to output at the same time, some concentrators must be
added that will be used as delay elements.

The second difficulty is the design of output queues that accept cells S times faster than
the speed of the output link. A naive approach is to implement an FIFO that accepts cells S
times faster than the output link. However, this is expensive to implement and it might not be
worth the effort since these buffers cannot sustain the imbalance between input and output
speeds for a longer period. If the objective is to sustain this for a shorter period, a cheaper
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F I G U R E 21.10 Knockout trees for S = 4 and N = 8.

solution is to use k memory banks and interleave the access to these banks. The knockout
switch design [755] uses a shifter to spray the cells to these S memory banks in round-robin
order. The cells to be transmitted on the output link are read one at a time in the same order.

21.9 Virtual Output Queueing
To understand virtual output queueing, let us take a closer look at HOL blocking. The HOL
blocking occurs because the input port is allowed to schedule only the cell at the front of the
queue. If we can relax this restriction and allow the cells behind the head of the queue to be
scheduled for transmission when the head is blocked, then HOL blocking can be eliminated.

Well, we might think that during scheduling we need to consider all the cells waiting
in each input queue, which could be hundreds or thousands. If the state of each queue, (es-
pecially the cells waiting), has to be passed to the scheduler, it would become complex and
consume too much memory, even assuming only a single bit per cell.

However, a few key observations eliminate the need for such complexity. First, note that
all the cells waiting in the input queue can be destined for only N possible outputs. Second,
if the cells C1 and C2 from the same input queue S are destined for the same output port R,
then in order to maintain FIFO order, C1 needs to be scheduled before C2. Hence, it does not
make sense to schedule C2 before C1. As a result, any cells other than the first cell destined to
every distinct output port need not be considered for scheduling.

Therefore, the input queue at each port is split into multiple queues, one queue per out-
put at each input port as shown in Figure 21.11. Hence, a total of N2 input queues is needed
for an N × N switch. This concept is called virtual output queueing, although the queueing
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F I G U R E 21.11 A virtual output-queued switch with N queues per input port.

physically occurs at the inputs and is referred to as VOQ for the rest of the chapter. With vir-
tual output queues, scheduling to pair input ports to output ports becomes complex. Hence,
in the next section, we digress to examine the theory behind how the scheduling problem
can be mapped to a bipartite graph matching problem. It is followed by a discussion of two
important scheduling algorithms, parallel iterative matching and iSLIP.

21.9.1 Maximum Bipartite Matching

The use of virtual queues complicates the problem of scheduling as it needs to take into
consideration N2 queues at the input ports and pair them with the output port in such a way
that maximum transfer of cells occurs in a single time slot. Such a scheduling problem can be
viewed as an instance of a bipartite matching problem as shown in Figure 21.12. The inputs
and outputs form the nodes of a bipartite graph while the connections needed by queued
cells from different inputs to various outputs are considered as edges in a bipartite graph.
Additionally, there are no edges among the set of inputs or among the set of outputs; after
all, the goal is to transfer cells from input ports to output ports, not from one input port to
another input port.

A maximum match is one that pairs a maximum number of inputs and output ports to-
gether and there is no other pairing that matches more inputs and outputs. We can easily
show that such pairings maximize the connections made in each timeslot and, as a result,
maximize the instantaneous allocation of bandwidth. There are many algorithms for maxi-
mum bipartite matching, and the most efficient requires O(N5/2) time [296]. A randomized
algorithm [353] comes close to finding a maximum match, but it still requires O(N + E) in an
N ×N bipartite graph with E edges. The main drawbacks of these algorithms are that they are
too complex to implement in hardware and too slow to be of any practical use. Furthermore,
a maximum matching can potentially starve some input queues indefinitely. The following
example illustrates such a possibility.
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F I G U R E 21.12 Equivalence of scheduling and bipartite matching.

F I G U R E 21.13 Starvation in maximum matching.

Example 21.4 Starvation in a maximum matching.
Consider a 4 × 4 crossbar switch with cells shown in Figure 21.13. Assume that a steady

stream of cells keeps arriving at input A destined for output 2. At the same time, input C
also gets a stream of cells, of which the majority are destined for output 4 and the remaining
for 2. In this case, the maximum matching would always connect input A with output 2 and
input C with output 4. This is because a maximum matching algorithm pairs as many inputs
with outputs and no more pairing is possible. Hence, as long as there are cells at input C
destined for output 4, the cells queued at input C destined for output 2 would never have an
opportunity to be transmitted. �

Due to such drawbacks, practical scheduling algorithms attempt to find a maximal match.
A maximal match is one for which new pairings of input to output cannot be trivially added;
each node is either matched or has no edge to an unmatched node. A maximum match is
maximal, but the reverse is not true. There may be a way to add more input and output pair-
ings than a maximal match by reshuffling the pairings of input ports to different output ports.
The following example illustrates the difference between maximal and maximum matching.



Cop
yr

igh
t

22 21.9 Virtual Output Queueing

F I G U R E 21.14 Maximum versus maximal matching.

Example 21.5 Maximal versus maxiumum matching.
Consider again a 4 × 4 crossbar switch. For the sake of discussion, assume that each input

port has three cells to transfer to the output port as shown in Figure 21.14. Port A has cells to
transfer to output ports 1, 2, and 3. Similarly, cells bound for outports 1, 3, and 4 are waiting
to be transferred to ports B and C. Also, port D has cells 2, 3, and 4 to be transferred to their
respective output ports.

Now the pairings {(A,1), (B,3), (C,4), (D,2)} constitute a maximum match since they
provide maximum parallelism by connecting all inputs to outputs. However, the pairings
{(A,3), (B,1), (D,4)} constitute a maximal match. This is because it is possible to obtain more
parallelism by different pairings of input ports and output ports as in maximum match-
ing. �

In practice, to communicate the scheduling needs, each input port must send a bitmap
of size N to the scheduler. In the bitmap, a bit at position i indicates whether there is any
cell destined for output port i. Since each input port sends a bitmap, the scheduler needs to
process N2 bits and for smaller values of N, say 32, this might not be enough bits to com-
municate to other components using buses or even to store in memory. Now let us turn our
attention to a few scheduling algorithms that achieve close to maximal matches at very high
speeds.

21.9.2 Parallel Iterative Matching

The key idea behind parallel iterative matching (PIM) [15] is the use of randomness to find a
maximal match between input ports and outputs. The algorithm uses multiple iterations to
converge quickly on a maximal match so that the number of cells transferred in a time slot is
maximized. Before outlining the algorithm, let us attempt to understand it using the example
in Figure 21.15.

Example 21.6 Scheduling and transfer of cells using parallel iterative matching.
The algorithm starts with the request phase, where all the input ports A, B, C, and D send

requests to output ports for which they have a cell to forward to as shown in Figure 21.15. As
we can see, A sends requests to ports 1, 2, and 3 while ports B and C both send their requests
to 1, 3, and 4. Finally, port D communicates its request to ports 2, 4, and 3.
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F I G U R E 21.15 Single-iteration PIM in operation.

Now observe that output port 1 gets three requests from A, B, and C. Of course, it can
service only one port at a time. If that is the case, how will output port 1 choose which request
to grant? A simple way is to choose randomly among the requests. Let us say port 1 chooses
to serve A. Since port 2 also received requests from both A and D, it has to break the tie by
choosing one of them randomly, say port A again. Finally, assume that ports 3 and 4 agree to
serve port B and port C, respectively. Since grants to requests are issued, this phase is referred
as the grant phase.

Notice that port A has been chosen by both ports 1 and 2, leading to input port contention.
Now how do we break the tie? Well, again we can randomly choose one of them. Assume that
port A picks port 1. Hence, a third accept phase is needed in which each input port randomly
chooses an output port. The final pairings are (A,1), (B,3), and (C,4). Port D does not have
a pairing since it lost among the choices made randomly. The appropriate crosspoints are
turned on and cells are transferred. This concludes round 1 of the algorithm.

For round 2, again the requests for the remaining cells are sent from the input ports to the
output ports. In this case, port A sends to output ports 2 and 3 and port B to output ports
1 and 4. Since the cells remaining in port C have to be transferred to ports 1 and 3, it sends
the requests to those ports. Port D has not been able to transfer any cell in the first round
and, hence, its requests are sent to ports 2, 3, and 4 as it has a cell bound for these ports.
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Output ports 1 and 4 grant the requests from port B. On the same note, port A receives a
grant from output ports 2 and 3 while ports C and D receive none. Port A accepts the request
from port 2 and port B from 1. Now the actual data transfer takes place, which concludes
round 2. Note that an opportunity to transfer a cell from port D to port 4 is lost because of
randomness. �

The algorithm continues in this fashion until all the cells are transferred to their respective
output ports. Figure 21.15 illustrates only the first three rounds of PIM. The remaining three
rounds of the PIM operation are left as an exercise to the interested reader.

Based on the understanding of the operation, we are now ready to formally describe the
algorithm. The PIM algorithm consists of three phases, similar to the take-a-ticket scheduler,
which are described as follows:

• Request Phase: Each unmatched input sends a request to every output for which it has
a buffered cell. This notifies an output port about the input ports that are interested in
communicating.

• Grant Phase: If an unmatched output received any requests, the algorithm chooses ran-
domly to grant a request. The output port notifies each input if its request was granted.

• Accept Phase: If an input receives any grants, it accepts one of them and notifies that
output.

As we saw earlier, note that two or more input ports can request the same output port, leading
to output port contention; the grant phase chooses one of them randomly. Similarly, input
port contention can occur when two or more grants are issued to the same input port from
multiple output ports; the accept phase chooses one of them randomly.

For Example 21.6, it may take as many as six time slots to transfer the cells, as shown in
Figure 21.16. Each box in the figure corresponds to an opportunity to transfer a cell from an
input port to an output port. In round 1, which corresponds to time slot 1, cells 1, 3, and 4 are
transferred from their input ports A, B, and C, respectively. Similarly, during time slot 2, port
A transmits cell 3 and port B transmits its cell 1 and so on. Out of 24 (6 time slots × 4 ports)
opportunities to transmit cells, only 12 of them were used, which gives a throughput of 50%.

F I G U R E 21.16 Transfer of cells using single-iteration PIM.
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The low throughput can be attributed to a single iteration of the algorithm in each round,
where some input ports might have been paired with output ports. However, some input
ports still can be paired with other unpaired outputs. This is because two or more output
ports can grant to the same input port while it chooses only one of them. The output ports
whose grant is not accepted can be paired with some other unpaired input port. Hence, the
algorithm is repeated in each round, retaining the matches made in the previous iterations to
find matches for unpaired input and output ports.

Example 21.7 Scheduling and transfer of cells using two-iteration PIM algorithm.
Continuing with Example 21.6, we saw that port A received two grants (one from port 1

and the other from port 2), before it chose port 1. Also note that port D did not have a pairing.
Now since port 2 is free, it could very well have been paired with port D, as it has a cell
destined for. If one more iteration of the algorithm is allowed with unmatched input and
output ports, then the algorithm would have paired port D with port 2 and four cells could
have been transferred in round 1. This is shown in Figure 21.17. The requests and grants are
shown as solid black arrows; the matches in the previous iterations are shown as light black
arrows. �

Hence, to maximize the pairings, the algorithm needs to be rerun preserving the matches
from previous iterations. A follow-up iteration will increase the number of matches by 1, if
maximum pairing has not occurred. Subsequent iterations cannot worsen the matches since
the previous matches are retained. The cells transferred in each time slot using two-iteration
PIM for Example 21.7 are shown in Figure 21.18. In contrast to single-iteration PIM, it requires
only four time slots (or rounds). From a total of 16 opportunities to transmit, 12 are utilized

F I G U R E 21.17 Round 1 of a two-iteration PIM in operation.
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F I G U R E 21.18 Transfer of cells using two-iteration PIM.

and, hence, the throughput is 75% (12 × 100/16), which is a 25% improvement over single-
iteration PIM and “take-a-ticket” scheduling.

Since PIM requires a variable number of iterations to find a maximal match, it is impor-
tant to understand the number of iterations it will take to converge. In the worst case, if all
outputs grant requests to the same input, only one match will be made in a single iteration.
If this sequence is repeated, it will take N iterations to reach a maximal match. Hence, it is
no faster than a sequential approach. In the best case, every output grants to a unique input,
achieving a maximal match in one iteration. For the average case, it takes O(log2 N) iterations
to converge [15], independent of the pattern of requests. This is based on the observation that
each iteration, on average, resolves 75% of the remaining unresolved requests.

For a large value of N, from an implementation perspective, it might not be possible
to iterate until the maximal match is reached. This is because of the fixed amount of time
required to schedule the switch. Hence, a small fixed number of iterations is used. Also, note
that the algorithm might not necessarily forward cells through the switch in the order in
which they arrive.

Since the algorithm randomly selects a request among contending requests, all the re-
quests will eventually be granted, ensuring that no starvation occurs in any input queue.
Hence, no state is needed to keep track of how recently a VOQ has been served. The algo-
rithm begins all over, at the beginning of each cell time, independently of the matches that
were made in the previous cell times. While the use of randomness does not require main-
taining the state, it is expensive to implement, as a selection has to be made randomly among
the requests of a time-varying set.

If a single iteration is used, the throughput of PIM is limited to approximately 63%, which
is only slightly higher than a switch that uses FIFO [460]. The rationale for this is as follows.
The probability that an input port will not be granted its request is (1 − 1/N)N . As N in-
creases, the throughput tends to be 1 − 1/e ≈ 63%. However, the algorithm typically finds
a good maximal match after several iterations. Since each iteration requires the execution of
three phases, the time for scheduling increases, which affects the rate at which the switch can
operate. As a result, the switch provides lower throughput for moving packets between line
cards. Hence, it is desirable to have a matching algorithm that uses one or two iterations to
find a close enough maximal match.
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21.9.3 iSLIP Scheduling
The iSLIP algorithm was designed to overcome the problems of complexity and unfairness
in PIM. It is a simple iterative algorithm that achieves close to maximal matches in just one
or two iterations. As discussed in the previous section, PIM chooses randomly among a com-
peting set of requests or grants in order to provide fairness. However, iSLIP provides fairness
using rotating pointers that track which input (output) port needs to be served next. These
pointers allow the “winning” request or grant to be chosen among multiple contenders in
a round-robin fashion. Even though these pointers are synchronized at the start of the algo-
rithm, they tend to desynchronize, which results in maximal matches as time progresses. For
the sake of discussion, let

Ii = Accept pointer at input port i.

Oj = Grant pointer at output port j.

The algorithm starts by initializing Ii for all values of 0 < i < N − 1 to the first output port.
Similarly, Oi, for all values of 0 < j < N − 1 is initialized to the first input port. The algorithm
is invoked at the start of each time slot and uses single or multiple iterations to match input
ports that have cells to transmit to output ports. The following steps are in the iteration:

• Request Phase: Each input port sends a request to every output port for which it has a
cell queued in its VOQs.

• Grant Phase: When an output port j receives one or more requests, it chooses the lowest
input port number that is equal to or greater than Oj. After choosing the input port to
serve, the output port notifies each input whether its request has been granted.

• Accept Phase: When an input port i receives multiple grants, it chooses to accept the
lowest output port number that is equal to or greater than Ii. Once the input port accepts
a grant, Ii is incremented to the next output port in a circular order. In other words, if
input port i accepts a grant from output port X , then Ii is updated to (X + 1) mod N.
Pointer Oj of output port j is also incremented in circular order to the next input port
beyond the granted input. If the accepted input port is Y , then Oj is assigned the value of
(Y + 1) mod N. These pointers are updated only after the first iteration, not in subsequent
iterations.

As mentioned earlier, the steps of the iteration are repeated a predefined number of times
with unmatched inputs and outputs, retaining the matches from the previous iterations.
Finally, the cells are transferred from the matched input port to the output port. To ob-
tain a concrete understanding, let us use an example of how iSLIP schedules a set of
cells.

Example 21.8 Scheduling and transfer of cells using iSLIP.
Consider scheduling the same set of inputs as in Example 21.6 using two-iteration iSLIP.

The first three rounds of operation of iSLIP are shown in Figures 21.19, 21.20, and 21.21. Each
round consists of two iterations before the actual data transfer occurs. As can be seen from
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F I G U R E 21.19 Two-iteration iSLIP scheduling in operation—round 1.

the figures, each output port is associated with a grant pointer Ii for 1 < i < N and all of them
are initialized to the first input port A. Similarly, each input port maintains an accept pointer
Oj for 1 < j < N and is initialized to the first output port 1.

In Figure 21.19, each input port sends requests to each output port for which it has a
queued cell. According to the algorithm, each output port grants to the lowest input equal
to or greater than its grant pointer. For example, when output port 1 receives requests from
input ports A, B, and C, it grants to A since its pointer O1 points to A. Similarly, output ports
2 and 3 also grant to A as their grant pointers contain A while the output port 4 grants to
input port B.

As the grants are communicated to the input ports, A finds that it received three grants,
one each from ports 1, 2, and 3. The accept pointer IA indicates that A can accept grants from
port 1 or greater. Therefore, it chooses to accept the grant from port 1 and rejects the grants
from ports 2 and 3. Similarly, B accepts the single grant from port 4. The accepted grants
are communicated to the respective output ports, A to 1 and B to 4, as shown in the upper
rightmost column in Figure 21.19. At this time, the grant pointers O1 and O4 are updated to B
and C, respectively. Similarly, accept pointers IA and IB are updated to 2 and 1, respectively.
Note that the value of IB continues to be output port 1 since the next port after port 4 is 1 in
circular order.

Observe that the grant pointers O2 and O3 are not incremented despite granting for
port A. This is because their grants are not accepted by port A. If these grant pointers are
incremented, even after the grant is rejected, they might be synchronized in lock-step (for
details refer to [460]), thereby reducing the number of cells transmitted in a time slot.

At the end of the first iteration, a match of size only 2 has been achieved. It can be further
improved by a second iteration, shown in the lower half of Figure 21.19. The second iteration
begins with unmatched inputs only requesting unmatched outputs. Input ports C and D send
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F I G U R E 21.20 Two-iteration iSLIP scheduling in operation—round 2.

requests for ports 3 and 2, respectively, which are granted. Unlike the first iteration, the grant
and accept pointers are not incremented to avoid starvation [460].

Thus, the accept pointer at C and D remains at A while the grant pointers at 2 and 3
remain at 1. At the end of the second iteration, the paired inputs and outputs are (A,1),
(B,4), (C,3), and (D,2). The crosspoints are turned and the actual data transfer occurs. The
data transfers are shown as thick solid lines in the bottom rightmost switch in Figure 21.19.

The next two rounds of the operation of iSLIP are shown in Figures 21.20 and 21.21. The
reader can trace through the algorithm and identify the cells transferred in each round. By the
end of three rounds, all the cells except cell 3 at input port B are transferred to the respective
output ports. The remaining cell can be transferred in the fourth round. �

How do the accept and grant pointer break away from each other? Observe the first row
in Figure 21.20. At the start of round 2, since output port 1 has been granted to input port
A, it moves on to provide priority for serving ports beyond A, in this case B. Hence, even if
port A has another cell destined for port 1 (unlike our example), port 1 will grant only the
requests for port B and beyond.

The algorithm requires that 2N pointers be maintained, one for each input port and
one for each output port. Each pointer should have log2 N bits to address the ports from 0
to N − 1.

The time slot at which the cells depart from the input port for Example 21.8 is shown in
Figure 21.22. As shown, all the cells are transmitted in four time slots. While comparing it with
two-iteration PIM, it might appear that iSLIP performs only as well as PIM even with two
iterations (both consume four time slots). This is due to the startup penalty of iSLIP because
of the synchronization of pointers. Once the pointers are desynchronized, iSLIP performs
well with just a single iteration. Also, notice that despite the startup penalty, iSLIP uses all the
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F I G U R E 21.21 Two-iteration iSLIP scheduling in operation — round 3.

F I G U R E 21.22 Transfer of cells using two-iteration iSLIP.

transmission opportunities in the first two rounds compared to PIM. Most of the commercial
implementations of iSLIP use only a single iteration.

21.9.4 Priorities and Multicast in iSLIP

For many Internet applications such as VoIP and video, their traffic must be scheduled
through the router ahead of lower-priority traffic to guarantee latency and jitter requirements.
For this the switch fabric must let this traffic pass as quickly as possible. Similarly, applica-
tions like video conferencing require support for their packets to be replicated at the router for
multicasting. Since the growth of such traffic is on the rise, first-class support for multicasting
is becoming more important.

The iSLIP algorithm can easily accommodate priorities using a separate VOQ for each
priority at each input port per output port. For instance, if there are four priorities that need
to be supported on a 16 × 16 switch, each input port needs 64 (4 priority levels × 16 out-
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put ports) VOQs. Also, for each output port j and priority k a separate grant pointer Ok
j is

maintained. Similarly, an accept pointer Ik
i is also maintained at each input port for each pri-

ority. Scheduling the prioritized traffic necessitates performing the original iSLIP algorithm
on each input and output port on the highest priority level for which there are cells to be
transmitted.

To be precise, each output port accepts a request from the highest priority request it re-
ceives; in addition, each input port also accepts a grant from the highest priority level it sees.
Consider a situation in which an input port I issues a request for priority level 1 for output
port 2 and another request for priority level 3 for output port 3. If both requests are granted,
I chooses the one with the highest priority grant. Note that the choice is not based on accept
pointers since they are at different priorities; instead it is based on priority. Once the grant
is accepted in the first iteration for a priority k between input port I and output port O, the
corresponding accept and grant pointers are incremented.

A straightforward approach for implementing multicast is to replicate the input cell and
transmit a copy to the output port for every time slot for the respective output ports. But
the disadvantage is that the same input cell competes with other cells multiple times for
the switch. This reduces the available switch bandwidth for other traffic at the same input.
However, as seen in Section 21.6, crossbar naturally supports multicasting, which can be used
to achieve higher throughput.

The iSLIP can be extended to support multicast, and the variant is referred to as
ESLIP [459]. To accommodate multicast, ESLIP includes an additional queue per input port.
The use of a single queue might introduce HOL blocking for multicast. Indeed, it will. For
instance, consider cell C1 destined for outputs O1 and O3, which in the queue occurs before
cell C2 bound for outputs O2 and O4. If outputs O1 and O3 are busy, the cell C1 will block cell
C2 even if outputs O2 and O4 are idle. If HOL blocking needs to be avoided for multicast, it
will require a queue for each subset of output ports, which might not be practical (216 for 16
ports). The set of output ports to which an input cell needs to be replicated is called its fanout.
For instance, if input port I contains a cell that needs to be copied to output ports 1, 2, and 4,
then its fanout is 3.

Now the multicast traffic can be scheduled in two ways. In the first approach, referred to
as no fanout-splitting, all copies of the input cell are transmitted in a single time slot. In this
case, if there is contention for one of the output ports, none of the copies is transmitted and it
has to be retried in some other time slot. In the other approach called fanout-splitting, the cells
to be multicast are delivered to output ports over multiple time slots. The cells that are not
transmitted due to contention in some output ports will continue to try in the next time slot.
Studies [287], [300], [570] show that fanout-splitting leads to higher throughput with a slight
increase in implementation complexity.

ESLIP implements a variation of fanout-splitting in which a particular input is favored
until it completes the transmission of its fanout completely before the next input cell, which
is different from multiple inputs competing for output ports and transmitting their fanouts
partially. This version of fanout-splitting is implemented in ESLIP using a shared multicast
grant pointer that is different from the separate grant and accept pointers per port for unicast.

When a mix of multicast and unicast requests arrives at an output port, how does the
output port choose which one to grant? ESLIP solves this problem by giving preferential
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treatment to unicast and multicast in alternate time slots. Let us consider an example of how
a mix of unicast and multicast traffic is handled.

Example 21.9 Scheduling of unicast and multicast traffic using ESLIP.
Consider two input ports I1 and I2 that have a unicast cell and a multicast cell to be trans-

mitted, respectively. Let us assume that the unicast cell from I1 is destined for output port O4

and the multicast cell from I2 is destined for output ports O1, O2, and O4. Also assume that
the switch provides preference for unicast traffic in odd time slots and for multicast traffic in
even time slots.

If the current time slot is odd, then the output O4 will grant the request for unicast from I1.
Since the outputs O1 and O3 do not have any requests for unicast traffic, they will choose
to grant the multicast request to the first port that is greater than or equal to the current
shared multicast grant pointer. Assuming that I2 is chosen, the outputs O1 and O3 will grant
request I2.

Unlike unicast, all the multicast grants are accepted by input I2. Also, the shared multicast
grant pointer is not increased beyond I2, since I2 has not yet completed its fanout. In the
next time slot, when the multicast traffic gets priority, the grant will be issued to O4, which
completes the fanout of I2. Then the shared multicast grant pointer is increased by one past I2.

�

21.10 Input and Output Blocking
So far, our attention has been focused on HOL blocking and on how it affects the throughput
of the crossbar; various solutions that eliminate HOL blocking have been outlined. But the
delay experienced by a packet inside a router as it travels from the input interface through
the crossbar to the outgoing interface can be unpredictable. However, with the growth of the
Internet, large amounts of multimedia and delay-sensitive traffic require that packets arrive
at their destination within a predictable time.

Routers, as we shall see in Chapter 18, in their outgoing interfaces employ an output link
scheduler, which determines the exact time at which each packet needs to be transmitted.
Such output scheduling alone cannot guarantee a predictable delay for the packets forwarded
by the router. Within the router, the packets could experience unpredictable delays as they try
to pass through the fabric. These delays in the crossbar can be attributed to input and output
blocking.

Input blocking occurs when there are multiple input cells in different VOQs on the same
input port contending for the fabric. Since the scheduler selects only one cell from a VOQ
to be served in a time slot, the other cells are blocked. For a better understanding, consider
the VOQs shown in Figure 21.11. Assume that the scheduler selects a VOQ to be serviced by
the scheduler at one input. The other nonempty VOQs at the same input must wait until a
later time slot for service. In fact, it will be difficult to predict when a nonempty VOQ will be
scheduled to receive service. This is because new cells might keep arriving for VOQs in other
inputs in every time slot, changing their occupancy, and the scheduler tries to pair VOQs in
input ports with output ports to achieve a maximal match so that throughput is maximized.
Hence the VOQ needs to compete with other VOQs that might block it for an unpredictable
number of time slots.
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To understand output blocking, consider two cells in different input ports destined for the
same output port. Since each output line in a crossbar switch can connect to one input during
a cell time, only one cell can be transferred. The other cell will be blocked until a later cell time.
In such cases, we say that output blocking has occurred since the transfer of a cell bound to
an output blocks other cells bound for the same output. Similar to input blocking, in output
blocking the time when a cell will be delivered to its output can also be unpredictable.

Example 21.10 Unpredictable delay due to input blocking and output blocking.
Consider the set of input cells in VOQs shown in Example 21.8. Assume that all the cells

arrived at their VOQs at the same time. At the end of round 1, input port B is able to transfer
its cell bound for output port 4. Note that port B contains other cells bound for ports 1 and 3,
which are blocked as it is serving the cell for port 4. These cells are transmitted later in round
2 and round 4. Even though all the cells arrived at the same time, the cell for port 4 did not
experience any delay, but the cells for ports 1 and 3 were delayed by one time slot and three
time slots, respectively.

For output blocking, consider the cells bound for port 4 at input ports B, C, and D. In
round 1, port B is allowed to transmit to port 4 while ports C and D were blocked since the
output can serve only one input port in a time slot. Port C gets a chance to transmit in round
2, thus experiencing a delay of one time slot. In round 3, port D sends its cell to port 4, and
hence the delay is two time slots. As you can see, the delay is unpredictable in both cases and
to a large extent depends on the cells in other VOQs and the scheduling algorithm. �

Two techniques to control the delay a packet experiences through the crossbar switch
have been described in [459]. The first technique is to segregate packets into different pri-
ority classes based on the delay requirements. Higher-priority packets that belong to delay-
sensitive traffic are given preferential treatment access to the switch. While prioritization does
not eliminate input and output blocking, it mitigates the delay experienced when higher-
priority packets are affected by lower-priority packets. Results [459] indicate that if the traffic
in the higher-priority class is kept relatively small, the delay is close to zero. Therefore, the
high priority cells will be transferred to the output port with a fixed but negligible delay.
Scheduling of higher-priority cells ahead of lower-priority cells can be incorporated as de-
scribed in Section 21.9.4.

The second technique is to run the switch faster than the external input and output links
(as described in Section 21.8). For instance, when the switch is run S times as fast as the
external line, S cells can be transferred from each input port to each output port during each
time slot. Such a speedup delivers more cells per time slot and, hence, reduces the delay of
each cell through the switch. In an ideal case, every input cell can be transferred to its output
port immediately upon arrival when the switch runs with sufficient speedup. The worst-case
scenario is when all input ports need to transmit cells to the same output port, which requires
a speedup of N, in theory. As shown in Section 21.8, this is impractical.

21.11 Scaling Switches to a Large Number of Ports
As the Internet traffic enjoys tremendous growth, network operators require routers that are
capable of moving more than a few terabits per second of traffic. Since most of the traffic
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(a) (b)

F I G U R E 21.23 Replacing a cluster of routers (a) with a large-capacity scalable router (b).

passing through the router has to traverse the internal switched backplane, there is a need
for large-capacity switches. Unfortunately, the switched backplanes that we studied so far
cannot scale to large capacity to satisfy current and expected future routing demands. As a
result, a number of routers are interconnected with numerous links in a cluster-like form as
shown in Figure 21.23(a). In these architectures, routers need to employ expensive line cards
to connect links to other routers in the cluster. These links carry intracluster traffic rather than
the revenue-generating user traffic. Thus, it has been proposed that such router clusters be
replaced by a single scalable router (see Figure 21.23(b)). Such large routers are advantageous
as they save the cost of numerous line cards and expensive links. Furthermore, there will be
fewer such routers that need to be configured and managed.

A key requirement for such a router is the support for a large number of line cards. This is
required since the router needs many links to connect access routers, PoPs, and WAN. Hence,
the internal switched backplane needs to support a large number of ports. Another key re-
quirement is the need to accommodate high-speed links as their bit rates can be as high as
40 Gbps because of recent advances in optical technologies. As a result, the backplanes need
to scale in two orthogonal dimensions: number of ports and link speed. In the next few sections,
we discuss switching architectures that scale to a larger number of ports. In Section 21.14, we
examine in detail how switches can be scaled for higher link speeds.

21.12 Clos Networks
A single-stage network like a crossbar can be scaled to a larger number of ports using a
naive approach. Simply build a larger crossbar by interconnecting smaller crossbar chips.
However, the cost of the crosspoints still increases quadratically. In such a composite switch,
other dominant costs include the cost of the pins and the number of links connecting these
chips. Hence, these switches tend to be expensive for a large number of ports. Furthermore,
a crosspoint failure isolates an input from the output, making it less robust for failure.

Clos [146] described a method to reduce the number of crosspoints, in addition to pro-
viding more than one path between input and output ports, using multistage switching tech-
niques. A Clos (pronounced as “Close”) network is a three-stage network constructed by
using smaller crossbar switches as shown in Figure 21.24. Since the number of inputs and
outputs is the same in the Clos network shown in Figure 21.24, it is sometimes referred to as
a symmetric Clos network. The first stage divides the inputs into smaller groups of n each and
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F I G U R E 21.24 A (m,n, r) Clos network with m middle switches and r input and output
switches.

switches each group to the middle stage. It uses a simple crossbar switch of type n × m for
each group. Assuming there are r groups, then r such switches are needed for the first stage.
The middle stage uses m switches of type r× r, and each switch has one input link from every
switch in the first stage in order. In other words, output j of switch i in the first stage is con-
nected to input i of switch j in the midde stage. Similarly, each output link of a middle stage
switch is connected to one input link of a switch in the final stage, again in order. The final
stage involves r switches of type m × n connecting all m middle switches to its outputs. As
a result, there exists m distinct paths for a given pair of input and output ports through the
Clos network.

Often, such a Clos network is referred to by a triple (m,n, r), where m represents the
number of switches in the middle stage, n denotes the number of input (output) ports on
each input (output) switch, and r is the number of input or output switches. For a router
that switches packets from N input line cards to N output line cards, we need a (m,n, �N/n�)
Clos network. A Clos network need not be restricted to only three stages. Clos networks with
an odd number of stages more than three can be recursively constructed by replacing the
switches in the middle stage with a three-stage Clos network.

Recall that a switch is nonblocking if there is no configuration of connections that can
prevent the addition of a new connection between an idle input i and an idle output o. Now
the question is, can a Clos network be nonblocking? It might appear that perhaps it is not
nonblocking as an input switch has at most m connections to the middle stage and each
middle stage switch has at most one connection to an output switch. This might be true for
small values of m where an input switch I might not be able to find a path to a middle switch
with a free link to an output switch O.

However, Clos showed that when m ≥ 2n − 1, the resulting Clos network is nonblocking.
The proof for Clos’s observation is relatively simple. Consider a scenario where an input port
i that has been idle so far wants to transmit to an idle output port o. Assume that i belongs to
input switch P and o to output switch Q. If P is an n × m switch, in the worst case, at most
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F I G U R E 21.25 Proof of the Clos theorem.

n − 1 of its inputs can be busy. These inputs can be switched to at most n − 1 switches in the
middle stage. Similarly, if Q is an m × n switch, at most n − 1 outputs can be busy and these
outputs are fed from at most n − 1 middle-stage switches.

We can assume, without loss of generality, that the connections from switch P use the first
n−1 middle switches and the connections to switch Q use the last n−1 middle switches. This
scenario is depicted in Figure 21.25. To connect i to o, a middle switch not used by both P and
Q is required. Since n − 1 middle switches are used by P and different n − 1 middle switches
are used by Q, there must be at least 2n − 1 middle switches for a switch to be available for
communication between i and o.

Note that there is an implicit assumption that switches P and Q are crossbars or other
nonblocking switches. This implies that switch P always finds a path to connect i to the cor-
responding input link of the middle switch R and, similarly, switch Q finds a path to connect
to the corresponding output link of R to o.

Clos’ result is interesting since it showed, for the first time, that nonblocking switches can
be constructed with less than quadratic complexity. If m = 2n − 1 and r = N/n, then the total
number of crosspoints of a Clos switch is

(2n − 1) × N + (2n − 1) × N/n2 + (2n − 1) × N,
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which is less than N2. The number of crosspoints is minimized when n = √
N/2 and it is

approximately equal to 5.76N
√

N. For instance, if N = 1024, then the total number of cross-
points for a crossbar is approximately a million. For a nonblocking Clos switch, the number of
crosspoints is approximately 190,000, which represents a savings of 81%. However, this bene-
fit of reduced crosspoints is achieved at the expense of increasing the latency (two additional
stages of switching), but typically this is acceptable.

For instance, consider the design of a multichassis router where individual routers are
connected by high-speed switching fabric.

While nonblocking Clos networks are clearly desirable, they come at a cost. Can we do
better? By reducing the number of middle switches, the cost of the switch can be further
reduced. However, in this case, the Clos network is no longer nonblocking. Instead, when
m = n, the Clos switch becomes what is called rearrangeably nonblocking. A switch is rearrange-
ably nonblocking when a new connection from input i to an unconnected output o may re-
quire rearranging some existing connections to use different middle-stage switches. While a
nonblocking network might be desirable, it is not necessary for a router. Let us examine why.

Looking at a bit of history, the Clos networks were originally used in telephone networks
that are circuit switched. In these networks, a circuit is established before the actual conver-
sation takes place. During the establishment of a circuit, a path is chosen through the Clos
network and held for the entire duration of the conversation, which could be seconds or even
minutes. However, routers use the Clos network to move packets between the line cards. The
packets are often further divided into fixed-sized cells (typically between 40 and 64 bytes)
and transferred from their input ports to output ports for every time slot, as long as a path
can be established in the switch. Unlike circuit-switched networks, a path from input i to
output o is held only during the duration of a time slot (which is extremely small—on the
order of nanosec or picosec) and freed at the end of the time slot. Again, at the beginning of
the next time slot, a new set of paths between input and output ports is established, cells are
transferred, and so on. This approximately achieves the same effect of rearranging circuits in
a circuit-switched network.

21.12.1 Complexity of Scheduling Algorithms

With a rearrangeably nonblocking Clos switch, the scheduling becomes more complex. To
schedule cells from input ports to output ports, it is necessary to address two issues. First,
an input-buffered Clos switch, like crossbar, will suffer from HOL blocking. To avoid HOL
blocking, each input port maintains a separate queue for each output port in such a way that
cells in a VOQ do not block cells in any other VOQ except when contending for an input
port. Hence, a scheduling algorithm is required to determine a set of nonconflicting cells
from N2 input queues to be transferred to N output ports. This is similar to the bipartite
graph matching discussed in Section 21.9.1, where input ports form one set of nodes and the
output ports form another set of nodes. Some algorithms that find fast maximal matches are
discussed in the context of scheduling crossbar switches in Sections 21.9.2 and 21.9.3.

Second, given a maximal match of input and output ports, we need to identify inter-
nally conflict-free paths connecting an input port to an output port through the middle-stage
switches. Such a route assignment can be mapped onto an edge-coloring problem in a bi-
partite multigraph. Note that this bipartite multigraph is different from the bipartite graph
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F I G U R E 21.26 A (4, 4, 2) rearrangeable Clos network.

used for matching input and output ports. In this bipartite multigraph, the input switches are
mapped to one set of nodes I and the output switches to the other set of nodes O. The edges
in the bipartite multigraph represent the routes needed through the middle switches between
a node in I and a node in O. There can be more than one edge connecting a node in I to a
node in O and hence it is a multigraph.

If a unique color is assigned to represent each middle switch, the assignment of the routes
is equivalent to coloring the edges of the bipartite multigraph such that no two edges coming
out of a node have the same color. Well, what does this mean, intuitively? Coloring of the
edges represents the use of a distinct middle switch to connect one input switch to an output
switch. Recall that in a Clos network each middle switch has a single link to one input switch
and output switch. If two paths are needed for the same pair of input and output switches,
then it requires the use of two different middle switches. This is reflected by the constraint
that no edges incident on the same node should be of the same color. The following example
will provide a better understanding of this.

Example 21.11 Scheduling in a three-stage Clos switch.
Consider the three-stage Clos switch illustrated in Figure 21.26 with four middle-stage

switches. For the sake of discussion, assume a matching algorithm based on cells waiting in
VOQs identifying the pairs (A,3), (B,6), (C,1), (D,7), (E,2), (F,4), (G,5), and (H,8) of input
and output ports as the maximal match. This maximal match is shown as a bipartitie graph
in Figure 21.27(a).

With these pairings, we can identify the number of paths needed from an input switch i
to an output switch j. For instance, consider pairs (A,3) and (C,1). These require two paths
connecting switch IS1 and switch OS1. For all the pairs, the paths required are represented
as a switch bipartite multigraph shown in Figure 21.27(b). Now if each of the four middle
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(a) (b) (c)

F I G U R E 21.27 Route assignment (a) and edge coloring for scheduling (b, c) in a Clos
network.

switches is assigned a distinct color, the edges of the switch bipartite graph should be colored
such that no two edges incident on the same node are assigned the same color. A possible
color assignment is shown in Figure 21.27(c). In Figure 21.27(c), instead of colors, we use
different line shades to illustrate edges with colors. �

Thus, the scheduling algorithm must not only compute the maximal match of the input
and output ports but also the path through the middle stage. Hence, the time required for the
scheduler to make a decision becomes longer as the fast known edge-coloring algorithm takes
O(N log D), where D is number of distinct colors. Therefore, with the increase in switch size
(number of ports) and port speed, the time available for the scheduler decreases even further.
As a result, some implementations instead of using slow edge-coloring schemes resort to
approximate algorithms that distribute the traffic from each input across the middle switches
using some form of load balancing. Recently, a class of algorithms that solves matching and
the computation of paths simultaneously has been outlined [122], [123], [125].

An example of a commercial router using the Clos network is the T-series from Juniper
Networks. It uses a Juniper-designed 16 × 16 crossbar chip as the building block for all stages
of the Clos network [631]. The Clos network also provides the interconnection between line
cards in a multichassis T-series router where up to 16 single-chassis routers are connected by
a separate switch chassis.

There is another network type, called the Benes̆ (pronounced as “Be’nesh”) network, that
is very similar to the Clos network; Recall that that each switch at input in Clos networks is an
n × m switch, where n is the outer ports while m is the inner ports, and in the inner core is an
r × r switch. If we now set n = m = 2, and r = n/2 = 1, we have four switches where each one
has two input and two output ports, i.e., a 2×2 fabric serves as the basis—this building block
is recursively used in constructing the Benes̆ network. An example of a commercial router
that has implemented the Benes̆ network is the CRS-1 routers from Cisco systems [140].

21.13 Torus Networks
So far, many of the switch architectures we examined use some form of centralized control
for scheduling cells in every time slot. With the increase in line rates of the links and the need
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for large number of ports, the switching backplanes in routers need to scale to bandwidths
more than 1 Tbps. Such a large bandwidth requires the centralized scheduling algorithm to
operate at high speeds and still find pairs of inputs and outputs that maximize the number
of cells transferred. Since the currently used matching algorithms already trade accuracy for
time, a further increase in speed could reduce accuracy and in turn affect the throughput of
the backplane. A torus network provides an alternative that does not employ any centralized
control. It belongs to a class of networks called direct networks where each node serves as an
input port, output port, and a switching node of the network.

A k1 × k2 × · · · × kn torus network contains N = k1 × k2 × · · · × kn nodes placed in an
n-dimensional grid with ki nodes in each row of dimension i. Each node is assigned an n-digit
address (a1,a2, . . . ,an) where a digit at position i corresponds to dimension i. The digit at
position i uses the radix of the corresponding dimension, ki. The nodes are connected by a
pair of channels, one in each direction, to all nodes whose addresses differ by ±1 (mod kj)

in exactly one address digit j. Hence, each node requires two channels per dimension for a
total of 2nN channels. In a torus, there are many distinct paths between every pair of nodes.
For instance, in an 8 × 8 × 8 torus network, the packet can choose between 90 different 6-hop
paths from the source node to the destination node. By dividing the traffic over these paths,
the load can be balanced across the channels, even for irregular traffic patterns. This enables
the torus to be fault tolerant. By quickly reconfiguring around faulty channels, the traffic can
be routed along alternative paths.

A 4× 4 torus network is shown in Figure 21.28. Each node of the network uses a two-
digit address and both the digits use a radix of 4. Observe that the neighbors of the node
whose address is 11 are the nodes with addresses 01, 12, 21, and 10, all of which differ by a
single digit ±1. Figure 21.28 also shows two distinct paths by which packets from node 11 can
be sent to node 23, which are indicated by thick black lines. One path uses the intermediate
nodes 12 and 13 while the other uses the intermediate nodes 21 and 22.

In torus networks, routing packets from one node to another node need to load balance
the traffic across multiple paths for any traffic pattern. Otherwise, using a single path could
lead to overloaded processing of the intermediate nodes, which might result in delay and
eventually dropping of packets. To achieve load balancing, the following randomized algo-
rithm described in [708] might be used. A packet from source node s to destination node d
is first sent from s to a random intermediate node r and then from r to d. For instance, in
Figure 21.29, we show how a packet is to be delivered from node s = 11 to node d = 23 in a
4 × 4 torus network. It is routed via a randomly selected node 32.

How do we find the route from node 11 to node 32 and then from node 32 to node 23?
Recall that adjacent nodes in a torus network differ by one digit in their address. This property
can be exploited to direct routing [676]. At every intermediate node, the destination address
is used to determine the dimension and the direction the packet should take for the next
hop. This is referred to as dimension-order routing [163]. Alternatively, the source node itself
computes the route and prepends the packet with the route information, which is known as
source routing.

The torus network has been adopted in the Avici terabit switching router (TSR) [161].
It uses a three-dimensional torus topology kx × ky × kz that can be scaled to a maximum
configuration of 14 × 8 × 5 (560 nodes). Each line card carries one node of the torus and
is assigned a three-coordinate address (x,y,z). Each node is connected using bidirectional
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F I G U R E 21.28 A 4 × 4 torus network.

F I G U R E 21.29 Routing in a 4 × 4 torus network.

channels to six neighbors with the addresses [(x ± 1) mod kx, (y ± 1) mod ky, (z ± 1) mod kz].
Each of these channels provides a bandwidth of 10 Gbps in both directions.

The Avici TSR, unlike other router architectures that have dedicated switching fabrics,
distributes the switching task to each node in the network. Hence, each line card should
handle its own incoming and outgoing traffic in addition to the traffic from other line cards
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that pass by it. Therefore, all the active components related to fabric are carried on the line
card. This allows the TSR to expand incrementally starting with a few line cards; as traffic
grows, more line cards can be added, as needed. Also, line cards can be added or removed
while the router is in operation without affecting the forwarding of packets in other line cards.

Such flexibility can lead to partial torus networks because the router is not completely
populated with all the line cards. Even a fully populated router can lead to irregular torus
topologies because some line cards might have failed. To facilitate routing of packets in the
fabric, even in such scenarios, the TSR uses source routing. The exact route for a packet
through the fabric is determined by the sending line card or the source. This routing informa-
tion is expressed in the form of a string such as +x, +y, −z, −y, −x. Each route entry specifies
a single hop of the route from the source line card to the destination line card. For instance,
+x means that for the corresponding hop the packet should be forwarded in the positive x
direction.

The routes between any source line card s and any destination line card d are computed
depending on the current and possibly irregular topology in a software process that popu-
lates a table in hardware. Whenever a source line card needs to send a packet to a destination
line card, it consults the table and appends the route information to the packet header. This
route is used at every hop to determine the next line card to which the packet needs to be
forwarded.

As noted earlier, the torus fabric provides many different paths for packets from one line
card to another line card. To accommodate various IP traffic patterns, without overloading
any of its internal fabric channels, the TSR balances the load by distributing packets across
different routes. Each packet bound from a source line card s randomly chooses one of the
routes to the destination line card d. Since packets belonging to the same flow should be kept
in order, a flow identifier is used in the random selection of a route. This ensures that all the
packets in the same flow use the same route.

21.13.1 Packaging Using Short Wires

Another advantage of torus networks is the ability to package it using short wires for con-
necting nodes [161]. Why is this considered significant? Intuitively, the longer the wire is, the
longer it takes for the signal to propagate, which causes increased delay. Furthermore, the
bandwidth (bit rate) is inversely proportional to the square of the wire length [162]. For in-
stance, when the wire length is doubled, the bandwidth decreases by a factor of 4. However,
Clos and Benes̆ networks need to use longer wires for connections between stages. Hence,
they have to operate at low bit rates or use more expensive signaling to compensate for the
distance limitation of electrical signaling. Now let us see how a torus network uses short
wires.

Figure 21.30(a) shows a one-dimensional torus network containing four nodes. As can
be seen, the one-dimensional torus network is nothing but a ring that requires shorter wires
to connect the nodes, except for the connection between the first node 0 and the last node 3,
which requires a longer wire. A natural question is why a a shorter wire cannot be used to
connect node 0 and node 3. Such an approach, while simple, restricts the placement of nodes
in a higher-dimensional torus network. Hence, instead of reducing the wire length, the nodes
can be placed at equal distances from each other over the entire length of the wire as shown
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(a)

(b)

F I G U R E 21.30 Using short wires instead of long wires in a one-dimensional torus
network.

F I G U R E 21.31 A 4 × 4 torus network with short wires.

in Figure 21.30(b). In this approach, the length between nodes 1 and 2 might have doubled,
but all the connections between the nodes have the same length and there is no longer wire.
This approach can be easily extended for use in a higher-dimensional torus network. A 4 × 4
torus network can be easily packaged with uniformly short wires as shown in Figure 21.31.

21.14 Scaling Switches for High-Speed Links
So far, we have studied fabrics that scale in the number of ports. With advances in optical
technologies physical network links connecting to the router can be as fast as 10 Gbps. It is
anticipated that the link speeds can become as fast as 40 Gbps. Such an increase in the link
rate places more of a burden on the switches to transfer more data per second between the
line cards. In this section, we outline various techniques on how switches can be scaled to
accommodate higher link speeds.
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F I G U R E 21.32 Bit slicing using k identical switching planes and central scheduler.

21.14.1 Bit Slicing
Rather than a single, monolithic fabric, bit slicing utilizes k parallel, individual fabrics re-
ferred to as fabric planes. The bit-slicing technique is shown in Figure 21.32. Here each cell of
width C bits is placed across k identical planes and each plane carries a slice of size C/k bits.
A centralized scheduler ensures that all the switches are set to the same configuration during
each time slot. These slices carried by each plane need to be reassembled at the output port
to restore the original cell. This implies that the reassembly logic needs to operate at the same
speed as the fabrics.

Example 21.12 Transferring cells using bit slicing.
For the sake of discussion, assume a switch fabric with eight fabric planes containing

three input ports, referred to as A, B, and C, and three output ports referred to as 1, 2, and
3. With a cell size of 8 bits, each bit can be transferred by a fabric plane. Also, assume that
each fabric plane is a crossbar and the scheduler uses one of the algorithms, such as PIM or
iSLIP. Based on the cells waiting in the VOQs, let us assume for the current time slot that
the scheduler decides to pair port A with port 2, port B with port 3 and port C with port
1. Subsequently, it turns the crosspoints (A,2), (B,3), and (C,1) in each of the fabric plane.
The cells at ports A, B, and C to be transferred are sliced into individual bits and each bit is
transferred to a separate plane. Upon their arrival at the output ports, these bits are assembled
to restore the original cell. Note that each bit of the three cells is transferred simultaneously
in each fabric plane. �

21.14.2 Time Slicing
A different approach is to transfer an entire cell in a single fabric plane within a time slot. The
line card distributes the incoming cells evenly across all the fabric planes. At the begining
of time slot i, the scheduler makes the decision for fabric plane i to transfer the cells. Thus,
the scheduler works in turn on each of the k fabric planes in a round-robin fashion and it
takes k time slots to transfer k cells. Observe that in a given time slot only one of the fabric
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F I G U R E 21.33 Time slicing with k identical switching planes and a central scheduler.

planes is actively transferring a cell. This approach is known as time slicing and is shown in
Figure 21.33.

Example 21.13 Transferring cells using time slicing.
Assume that the switch fabric is similar to the one described in Example 21.12 except that

the number of fabric planes is three. To simplify the discussion, assume that each input port
has three cells. Port A has cells to ports 2, 3, and 1 in that order. Similarly, port B needs to
transfer cells to ports 3, 1, and 2 and port C to ports 1, 2, and 3. In the first time slot, the
scheduler chooses fabric plane 1 and connects port A to port 2, port B to port 3, and port C
to port 1 and turns those crosspoints to enable the transfers. Similarly, in the next time slot,
fabric plane 2 is arranged in such a way that port A is connected to port 3, port B to port 1,
and port C to port 3. Finally, in the third time slot, fabric plane 3 carries the rest of the cells to
their output ports. �

While bit slicing and time slicing provide simple ways to scale the switch to faster link
rates, both have the disadvantage of a centralized scheduler. The design of the scheduler
becomes challenging when the link rate increases as it has to operate at high speeds. Further-
more, the failure of the scheduler renders all the fabric planes nonoperable, which implies the
failure of the router. Clearly, this is not desirable.

21.14.3 Distributed Scheduling
In commercial routers, a variation of the time-sliced approach is adapted. In this approach,
shown in Figure 21.34, each fabric plane has its own scheduler and, hence, operates inde-
pendently. Therefore, many cell transfers occur simultaneously across the fabric planes. This
approach is advantageous since the scheduler design becomes simpler as it needs to operate
at lower speeds when compared to approaches using a centralized scheduler. The failure of a
scheduler affects only one fabric plane, and the other fabric planes can still continue forward-
ing cells.
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F I G U R E 21.34 Distributed scheduling with k identical switching planes and
independent schedulers.

Commercial routers like Juniper T-series [631] use a switch fabric with five identical fabric
planes, but only four of them are active simultaneously and the fifth acts as a backup for
redundancy. Each fabric plane carries a portion of the required bandwidth and when one of
the active fabric plane fails, the redundant fabric plane takes over. If more than one active
plane fails, the router will still continue to operate at a reduced bandwidth. Similarly, Cisco
CRS-1 [140] also uses eight fabric planes and each fabric card implements two planes of the
switch fabric. The traffic is evenly distributed across all the planes so that every plane carries
an equal amount of traffic. The loss of a single plane does not affect router operation, and
failure of multiple planes results in a linear and graceful degradation of performance.

21.15 Conclusions
A shared bus is a simple way to interconnect line cards. Because of their simplicity and
low cost, many low-end enterprise routers from various vendors use a shared bus. These
routers typically provide a throughput ranging between 1 and 2 Gbps. However, the shared
bus limits throughput and, hence, it is not used in medium-sized routers that need to pro-
vide a throughput of 40 Gbps. Shared memory switches provide an attractive alternative for
medium-sized routers, but the memory bandwidth limits its throughput. Instead, crossbar
switches are used, which allow transfer of traffic between multiple line cards simultaneously.
The limiting factors in a crossbar are the HOL blocking and the scheduling speed.

HOL blocking can be eliminated using VOQs but requires N2 VOQs for N ports. When
the number of ports increases, the scheduling speed needs to increase so that it is fast enough
to pair input ports to output ports. Hence, the design of such schedulers becomes complex.
Furthermore, the number of crosspoints grows with N2, which increases the complexity of
implementation. Hence, the crossbar is the switch topology of choice for routers with a low
to modest number of ports (up to about 64).

To scale switches to ports greater than 64, multistage switches are more appropriate as
they have reduced crosspoint complexity. The three-stage Clos network with a crosspoint
complexity of O(N

√
N) provides multiple paths from the input to output port. Typically, in

routers, Clos networks are used in a rearrangeably nonblocking configuration and the sched-
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uler ensures that the path exists in the switch when inputs and outputs are paired. Clos net-
works can scale as many as 256 to ports.

Unlike the aforementioned switches, torus networks do not employ a centralized sched-
uler. This eliminates the bottleneck of scheduling and the switch can scale to a large number
of ports. Each node using a small routing table routes the packets from the source node in the
torus network to a destination node by choosing a random intermediate node. These switches
can scale as many as 512 ports.

21.16 Summary
In this chapter, we studied different type of backplanes that facilitate the movement of pack-
ets from one line card to another line card in a router. At a very high level such switches can
be broadly categorized as shared backplanes or switched backplanes. At any given instant,
a shared backplane transfers packets between any two line cards and hence the through-
put is limited. However, a switched backplane transfers multiple packets simultaneously.
In switched backplane, we started our discussion with single-stage fabrics—shared memory
and crossbar. We examined in detail the scheduling algorithms for crossbar such as take-a-
ticket, PIM and iSLIP and analyzed their pros and cons.

We then studied the need to scale switches along two different dimensions: number of
ports and link speed. This is followed by a detailed discussion about various types of mul-
tistage switching fabrics, CLOS and Benes̆, and the complexity of scheduling algorithms in
these switches. We then examined the architecture of a torus network that belongs to a class
of direct networks. Finally, we explained various techniques about how to scale switches for
higher link speeds.

Further Lookup
Excellent treatises on switching can be found in [124], [163], [191], and [548]. In the context
of routing, a separate chapter is devoted to switches in Varghese’s book [712]. Keshav [365]
provides a nice introductory discussion about circuit and packet switches. Excellent surveys
about switching are also available [4], [41], [172], [333], [534], [699]. A more recent survey of
architectural choices for switches can be found in [705].

Prototypes of shared memory switch designs have also been described in [154], [175],
[199], and [346]. A scalable memory switch using inexpensive DRAMs that emulates an out-
put queueing switch has been presented in [332]. A recent study [342] outlines techniques for
scaling the memory bandwidth of network buffers.

Karol et al. [352] showed that HOL blocking results in reduced throughput. Various tech-
niques for reducing HOL blocking have been described [299], [351]. The idea of output queue-
ing to eliminate HOL blocking was outlined in the knockout switch implementation [755].
VOQs were proposed in [682]. A PIM scheduling algorithm for a crossbar was discussed in
[15], iSLIP in [458], and wavefront arbiter in [132] and [681]. In addition, a variety of schedul-
ing algorithms have been proposed [9], [394], [433], [482], [483]. For excellent coverage on
gigabit switching, see [547].

Clos published his seminal paper [146] on nonblocking networks that introduced the
idea of Clos networks. Furthermore, it derived the conditions under which these networks are
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strictly nonblocking. It was then discovered [70], [192], [647] that much smaller Clos networks
were rearrangeably nonblocking. There has only been a few attempts to find good matching
schemes for three-stage Clos networks. A random dispatching scheme that evenly distributes
cell traffic to the second stage is given in [117] and [134]. Newer fast matching algorithms
for Clos networks have been outlined [122], [123], [125]. Fast edge coloring algorithms are
described in [147], [148].

Benes̆ networks [70] were first introduced in Benes̆’ classic book [71]. Torus networks
have been used in some of the earliest parallel computers [56], [648]. A randomized routing
algorithm in switches was first described in [708]. A high-level overview of switches used in
commercial routers can be found in [121], [140], [161], and [631]. A comprehensive discussion
of telephone switching can be found in [697].

Exercises

21.1. Enumerate different types of backplanes and explain the advantages and disadvan-
tages of each of them.

21.2. What are the disadvantages of a crossbar?

21.3. What is HOL blocking? How can you prevent it?

21.4. Explain a shared memory switch and why it is difficult to scale such switches to higher
capacity.

21.5. What are the differences between the Clos network and the Benes̆ network?

21.6. What is the main difference between torus network and crossbar?

21.7. You are given the task of designing a router with 8 line cards. Each line card is capable
of operating at 1 Gbps. If you were to use a shared bus using an internal clock rate of
100 MHz, what should be the width of the bus? If the electrical loading on the bus is
0.6, what should be the width of the bus?

21.8. A router needs to be designed using a shared memory switch with 8 line cards. Each
line card is capable of 10 Gbps. The minimum size of the packet is 64 bytes. Assuming
an interleaved memory design is used, how many memory banks will be required if
the memory access time is 40 nanosec?

21.9. Consider a 3 × 3 crossbar shown in Figure 21.35. Each of input ports have cells 1, 3
and 2 destined for the respective output ports. How many time slots will be required
to transfer all the cells using take-a-ticket scheduler scheme?

21.10. Consider a 3 × 3 crossbar shown in Figure 21.35. Can you provide an example stream
of cells for each input where head of line blocking yields the lowest throughput?

21.11. For the crossbar shown in Figure 21.35, assume that the input port has the following
cells. Port A—1, 2, 3, 1 Port B—1, 3, 2, 1 Port C—2, 3, 3, 2.

How many time slots will be required to transfer the cells to output ports using one
iteration PIM and two iteration PIM? What is the switch throughput in both the cases?
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F I G U R E 21.35 A 3 × 3 crossbar.

21.12. For the crossbar shown in Figure 21.35, assume that the input port has the following
cells. Port A—1, 3, 2, 1 Port B—2, 1, 2, 2 Port C—2, 3, 3, 2.

How many time slots will be required to transfer the cells to the output ports using
one iteration iSLIP and two iteration iSLIP? What is the switch throughput in both the
cases?

21.13. For the crossbar shown in Figure 21.35, assume that the input port has the following
cells. Port A—1, 1, 1, 1 Port B—2, 2, 2, 2 Port C—3, 3, 3, 3.

How many time slots will be required to transfer the cells to the output ports using
take-a-ticket scheduler? one iteration PIM and one iteration iSLIP? What do you ob-
serve?

21.14. Design an 8 × 8 three-stage Clos switch. Under what conditions will this be a non-
blocking switch?

21.15. For a nonblocking 8 × 8 Clos switch, how many crosspoints will be required? If the
switch is rearrangably nonblocking, how many crosspoints will be required? Do you
see any saving in the number of crosspoints? If there are any, how much do you save?

21.16. Design an n = 2, m = 3, and r = 4 Clos network.
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